Advertisement

Applied Physics B

, Volume 107, Issue 2, pp 285–291 | Cite as

Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications

  • U. Guler
  • G. V. Naik
  • A. Boltasseva
  • V. M. Shalaev
  • A. V. Kildishev
Article

Abstract

We consider methods to define the performance metrics for different plasmonic materials to be used in localized surface plasmon applications. Optical efficiencies are shown to be better indicators of performance as compared to approximations in the quasistatic regime. The near-field intensity efficiency, which is a generalized form of the well-known scattering efficiency, is a more flexible and useful metric for local-field enhancement applications. We also examine the evolution of the field enhancement from a particle surface to the far-field regime for spherical nanoparticles with varying radii. Titanium nitride and zirconium nitride, which were recently suggested as alternative plasmonic materials in the visible and near-infrared ranges, are compared to the performance of gold. In contrast to the results from quasistatic methods, both nitride materials are very good alternatives to the usual plasmonic materials.

Keywords

Localize Surface Plasmon Resonance Field Enhancement Scattered Field Observation Distance Quasistatic Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported in part by ARO Award W911NF-09-1-0539, ONR MURI Grant N00014-10-1-0942, AFOSR MURI Grant FA9550-10-1-0264 and NSF-DMR 1120923. AVK wants to cite fruitful discussions with B. Lukiyanchuk (DSI, Singapore).

Supplementary material

(WMV 857 kB)

(WMV 873 kB)

(WMV 896 kB)

References

  1. 1.
    S.J. Tan, M.J. Campolongo, D. Luo, W. Cheng, Nat. Nanotechnol. 6, 268 (2011) ADSCrossRefGoogle Scholar
  2. 2.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007) Google Scholar
  3. 3.
    K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668 (2003) CrossRefGoogle Scholar
  4. 4.
    P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Laser Photonics Rev. 4, 795 (2010) CrossRefGoogle Scholar
  5. 5.
    A. Boltasseva, H.A. Atwater, Science 331, 290 (2011) ADSCrossRefGoogle Scholar
  6. 6.
    G.V. Naik, A. Boltasseva, Phys. Status Solidi RRL 4, 295 (2010) CrossRefGoogle Scholar
  7. 7.
    G.V. Naik, J. Kim, A. Boltasseva, Opt. Mat. Express 1, 1090 (2011) CrossRefGoogle Scholar
  8. 8.
    G.V. Naik, J.L. Schroeder, T.D. Sands, A. Boltasseva, arXiv:1011.4896v2 (2010)
  9. 9.
    M.D. Arnold, M.G. Blaber, Opt. Express 17, 3835 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    E.T. Yu, D. Derkacs, S.H. Lim, P. Matheu, D.M. Schaadt, Proc. SPIE 7033, 70331 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    G. Mie, Ann. Phys. 25, 377 (1908) MATHCrossRefGoogle Scholar
  12. 12.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983) Google Scholar
  13. 13.
    V.E. Ferry, J.N. Munday, H.A. Atwater, Adv. Mater. 22, 4794 (2010) CrossRefGoogle Scholar
  14. 14.
    B.J. Messinger, K.U. von Raben, R.K. Chang, P.W. Barber, Phys. Rev. B 24, 649 (1981) ADSCrossRefGoogle Scholar
  15. 15.
    M. Quinten, Appl. Phys. B 73, 245 (2001) ADSCrossRefGoogle Scholar
  16. 16.
    M.I. Stockman, Opt. Express 19, 22029 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972) ADSCrossRefGoogle Scholar
  18. 18.
    C. Loo, A. Lin, L. Hirsch, M.H. Lee, J. Barton, N. Halas, J. West, R. Drezek, Technol. Cancer Res. Treat. 3, 33 (2004) Google Scholar
  19. 19.
    C.P. Burrows, W.L. Barnes, Opt. Express 18, 3187 (2010) CrossRefGoogle Scholar
  20. 20.
    J. Jackson, Classical Electrodynamics (Wiley, New York, 1962) Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • U. Guler
    • 1
  • G. V. Naik
    • 1
  • A. Boltasseva
    • 1
    • 2
  • V. M. Shalaev
    • 1
  • A. V. Kildishev
    • 1
  1. 1.School of Electrical and Computer Engineering and Birck Nanotechnology CenterPurdue UniversityWest LafayetteUSA
  2. 2.DTU FotonikTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations