Applied Physics B

, Volume 107, Issue 2, pp 301–311 | Cite as

Delivering pulsed and phase stable light to atoms of an optical clock

  • S. FalkeEmail author
  • M. Misera
  • U. Sterr
  • C. Lisdat


In optical clocks, transitions of ions or neutral atoms are interrogated using pulsed ultra-narrow laser fields. Systematic phase chirps of the laser or changes of the optical path length during the measurement cause a shift of the frequency seen by the interrogated atoms. While the stabilization of cw-optical links is now a well-established technique even on long distances, phase stable links for pulsed light pose additional challenges and have not been demonstrated so far. In addition to possible temperature or pressure drift of the laboratory, which may lead to a Doppler shift by steadily changing the optical path length, the pulsing of the clock laser light calls for short settling times of stabilization locks. Our optical path length stabilization uses retro-reflected light from a mirror that is fixed with respect to the interrogated atoms and synthetic signals during the dark time. Length changes and frequency chirps are compensated for by the switching AOM. For our strontium optical lattice clock, we have ensured that the shift introduced by the fiber link including the pulsing acoustooptic modulator is below 2×10-17.


Optical Path Length Voltage Control Oscillator Frequency Comb Clock Pulse Beat Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The support by the Centre of Quantum Engineering and Space-Time Research (QUEST), funding from the European Community’s ERA-NET-Plus Programme (Grant No. 217257), from the European Community’s Seventh Framework Programme (Grant No. 263500), and by the ESA and DLR in the project Space Optical Clocks is gratefully acknowledged. We thank Burghard Lipphardt for helpful discussions.


  1. 1.
    Bureau International des Poids et Mesures (ed.), Comptes Rendus des séances de la 17e CGPM Pavillon de Breteuil, F-92310 Sévres, France (1983) BIPM Google Scholar
  2. 2.
    P. Gill, Metrologia 42, S125 (2005) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    T. Udem, R. Holzwarth, T.W. Hänsch, Nature 416, 223 (2002) ADSCrossRefGoogle Scholar
  4. 4.
    M.M. Boyd, A.D. Ludlow, S. Blatt, S.M. Foreman, T. Ido, T. Zelevinsky, J. Ye, Phys. Rev. Lett. 98, 083002 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    J. Lodewyck, P.G. Westergaard, A. Lecallier, L. Lorini, P. Lemonde, New J. Phys. 12(6), 065026 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    C. Degenhardt, T. Nazarova, C. Lisdat, H. Stoehr, U. Sterr, F. Riehle, IEEE Trans. Instrum. Meas. 54, 771 (2005) CrossRefGoogle Scholar
  7. 7.
    G. Dick, in Proceedings of 19th Annu. Precise Time and Time Interval Meeting, Redendo Beach, 1987 (U.S. Naval Observatory, Washington, 1988), pp. 133–147 Google Scholar
  8. 8.
    M. Takamoto, T. Takano, H. Katori, Nat. Phys. 5, 288 (2011) CrossRefGoogle Scholar
  9. 9.
    C. Lisdat, J.S.R. Vellore Winfred, T. Middelmann, F. Riehle, U. Sterr, Phys. Rev. Lett. 103, 090801 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    T. Middelmann, C. Lisdat, S. Falke, J.S.R. Vellore Winfred, F. Riehle, U. Sterr, IEEE Trans. Instrum. Meas. 60, 2550 (2011) CrossRefGoogle Scholar
  11. 11.
    S. Falke, H. Schnatz, J.S.R. Vellore Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, C. Lisdat, Metrologia 48, 399 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    S. Vogt, C. Lisdat, T. Legero, U. Sterr, I. Ernsting, A. Nevsky, S. Schiller, Appl. Phys. B 104, 741 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    L.-S. Ma, P. Jungner, J. Ye, J.L. Hall, Opt. Lett. 19, 1777 (1994) ADSCrossRefGoogle Scholar
  14. 14.
    G.J. Dick, J. Prestage, C. Greenhall, L. Maleki, in Proceedings of the 22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, Vienna VA, USA (1990), pp. 487–509 Google Scholar
  15. 15.
    C. Degenhardt, H. Stoehr, U. Sterr, F. Riehle, C. Lisdat, Phys. Rev. A 70, 023414 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    U. Fano, Rev. Mod. Phys. 29, 74 (1957) MathSciNetADSCrossRefzbMATHGoogle Scholar
  17. 17.
    C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions (Wiley, New York, 1992) Google Scholar
  18. 18.
    K. Wódkiewicz, Phys. Rev. A 19, 1686 (1979) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    P. Dubé, A. Madej, J. Bernard, L. Marmet, A. Shiner, Appl. Phys. B 95, 43 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    Analog Devices AD9956, 400 MSPS 14-Bit DAC 48-Bit FTW 1.8 V CMOS DDS Based AgileRF™Synthesizer Google Scholar
  21. 21.
    R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983) ADSCrossRefGoogle Scholar
  22. 22.
    V.I. Yudin, A.V. Taichenachev, C.W. Oates, Z.W. Barber, N.D. Lemke, A.D. Ludlow, U. Sterr, Ch. Lisdat, F. Riehle, Phys. Rev. A 81, 011804(R) (2010) ADSGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Physikalisch-Technische BundesanstaltBraunschweigGermany

Personalised recommendations