Applied Physics B

, Volume 107, Issue 4, pp 935–943 | Cite as

Thick-film technology for ultra high vacuum interfaces of micro-structured traps

  • D. Kaufmann
  • T. Collath
  • M. T. Baig
  • P. Kaufmann
  • E. Asenwar
  • M. Johanning
  • C. WunderlichEmail author


We adopt thick-film technology to produce ultra high vacuum compatible interfaces for electrical signals. These interfaces permit voltages of hundreds of volts and currents of several amperes and allow for very compact vacuum setups, useful in quantum optics in general, and in particular for quantum information science using miniaturized traps for ions (Kielpinski et al. in Nature 417:709, 2002) or neutral atoms (Folman et al. in Phys. Rev. Lett. 84:4749, 2000; Treutlein et al. in Fortschr. Phys. 54:702, 2006; Hofferberth et al. in Nat. Phys. 2:710, 2006). Such printed circuits can also be useful as pure in-vacuum devices. We demonstrate a specific interface which provides 11 current feedthroughs, more than 70 dc feedthroughs and a feedthrough for radio frequencies. We achieve a pressure in the low 10-11 mbar range and demonstrate the full functionality of the interface by trapping chains of cold ytterbium ions, which requires the presence of all of the above mentioned signals. In order to supply precise time-dependent voltages to the ion trap, a versatile multi-channel device has been developed.


Print Circuit Board Ytterbium Magnetic Field Gradient Ultra High Vacuum Vacuum Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge our electrical and mechanical work shops, and especially D. Gebauer who accomplished the thick-film printing for our chip carrier. We thank Andrés F. Varón for fruitful discussions. We acknowledge financial support by the European Union (STREP Microtrap and PICC), by the Deutsche Forschungsgemeinschaft and by secunet AG.


  1. 1.
    D. Kielpinski, C. Monroe, D.J. Wineland, Nature 417, 709 (2002) ADSCrossRefGoogle Scholar
  2. 2.
    R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, J. Schmiedmayer, Phys. Rev. Lett. 84, 4749 (2000) ADSCrossRefGoogle Scholar
  3. 3.
    P. Treutlein, T. Steinmetz, Y. Colombe, B. Lev, P. Hommelhoff, J. Reichel, M. Greiner, O. Mandel, A. Widera, T. Rom, I. Bloch, T.W. Hänsch, Fortschr. Phys. 54, 702 (2006) CrossRefGoogle Scholar
  4. 4.
    S. Hofferberth, I. Lesanovsky, B. Fischer, J. Verdu, J. Schmiedmayer, Nat. Phys. 2, 710 (2006) CrossRefGoogle Scholar
  5. 5.
    M.A. Rowe, A. Ben-Kish, B. Demarco, D. Leibfried, V. Meyer, J. Beall, J. Britton, J. Hughes, W.M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, D.J. Wineland, Quantum Inf. Comput. 2, 257 (2002) zbMATHGoogle Scholar
  6. 6.
    D. Stick, W.K. Hensinger, S. Olmschenk, M.J. Madsen, K. Schwab, C. Monroe, Nat. Phys. 2, 36 (2006) CrossRefGoogle Scholar
  7. 7.
    S. Schulz, U. Poschinger, F. Ziesel, F. Schmidt-Kaler, New J. Phys. 10 (2008) Google Scholar
  8. 8.
    M. Harlander, R. Lechner, M. Brownnutt, R. Blatt, W. Hänsel, Nature 471, 200 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    C.E. Pearson, D.R. Leibrandt, W.S. Bakr, W.J. Mallard, K.R. Brown, I.L. Chuang, Phys. Rev. A 73, 032307 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    D.T.C. Allcock, J.A. Sherman, D.N. Stacey, A.H. Burrell, M.J. Curtis, G. Imreh, N.M. Linke, D.J. Szwer, S.C. Webster, A.M. Steane, D.M. Lucas, New J. Phys. 12, 053026 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    D.L. Moehring, C. Highstrete, D. Stick, K.M. Fortier, R. Haltli, C. Tigges, M.G. Blain, New J. Phys. 13, 075018 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    J.J. McLoughlin, A.H. Nizamani, J.D. Siverns, R.C. Sterling, M.D. Hughes, B. Lekitsch, B. Stein, S. Weidt, W.K. Hensinger, Phys. Rev. A 83, 013406 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    M. Brownnutt, G. Wilpers, P. Gill, R.C. Thompson, A.G. Sinclair, New J. Phys. 8, 232 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    M.D. Hughes, B. Lekitsch, J.A. Broersma, W.K. Hensinger, Cont. Phys. 52 (2011). doi: 10.1080/00107514.2011.601918
  15. 15.
    W.S. Bakr, A. Peng, M.E. Tai, R. Ma, J. Simon, J.I. Gillen, S. Fölling, L. Pollet, M. Greiner, Science 329, 547 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    C. Weitenberg, M. Endres, J.F. Sherson, M. Cheneau, P. Schauss, T. Fukuhara, I. Bloch, S. Kuhr, Nature 471, 319 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    P. Böhi, M.F. Riedel, T.W. Hänsch, P. Treutlein, Appl. Phys. Lett. 97 (2010). doi: 10.1063/1.3470591
  18. 18.
    T. Karin, I. Le Bras, A. Kehlberger, K. Singer, N. Daniilidis, H. Häffner, Appl. Phys. B 106, 117 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    S. Schulz, U. Poschinger, K. Singer, F. Schmidt-Kaler, Fortschr. Phys. 54, 648 (2006) CrossRefGoogle Scholar
  20. 20.
    F. Mintert, C. Wunderlich, Phys. Rev. Lett. 87, 257904 (2001) ADSCrossRefGoogle Scholar
  21. 21.
    F. Mintert, C. Wunderlich, Phys. Rev. Lett. 91, 029902 (2003) ADSCrossRefGoogle Scholar
  22. 22.
    C. Wunderlich, in Laser Physics at the Limits (Springer, Berlin, 2002), pp. 261–271 Google Scholar
  23. 23.
    C. Wunderlich, C. Balzer, Adv. At. Mol. Opt. Phys. 49, 293 (2003) CrossRefGoogle Scholar
  24. 24.
    C. Ospelkaus, C.E. Langer, J.M. Amini, K.R. Brown, D. Leibfried, D.J. Wineland, Phys. Rev. Lett. 101, 090502 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    M. Johanning, A. Braun, N. Timoney, V. Elman, W. Neuhauser, C. Wunderlich, Phys. Rev. Lett. 102, 073004 (2009) ADSCrossRefGoogle Scholar
  26. 26.
    C. Ospelkaus, U. Warring, Y. Colombe, K.R. Brown, J.M. Amini, D. Leibfried, D.J. Wineland, Nature 476, 181 (2011) ADSCrossRefGoogle Scholar
  27. 27.
    K.R. Brown, A.C. Wilson, Y. Colombe, C. Ospelkaus, A.M. Meier, E. Knill, D. Leibfried, D.J. Wineland, Phys. Rev. A 84, 030303 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    N. Timoney, I. Baumgart, M. Johanning, A.F. Varón, M.B. Plenio, A. Retzker, C. Wunderlich, Nature 476, 185 (2011) ADSCrossRefGoogle Scholar
  29. 29.
    N. Timoney, V. Elman, S. Glaser, C. Weiss, M. Johanning, W. Neuhauser, C. Wunderlich, Phys. Rev. A 77, 052334 (2008) ADSCrossRefGoogle Scholar
  30. 30.
    A. Khromova, C. Piltz, B. Scharfenberger, T.F. Gloger, M. Johanning, A.F. Varón, C. Wunderlich, arXiv:1112.5302v1 [quant-ph] (2011)
  31. 31.
    M. Johanning, A.F. Varón, C. Wunderlich, J. Phys. B 42, 154009 (2009) ADSCrossRefGoogle Scholar
  32. 32.
    J. Welzel, A. Bautista-Salvador, C. Abarbanel, V. Wineman-Fisher, C. Wunderlich, R. Folman, F. Schmidt-Kaler, arXiv:1102.3645v2 (2011)
  33. 33.
    D. Mc Hugh, J. Twamley, Phys. Rev. A 71, 012315 (2005) ADSCrossRefGoogle Scholar
  34. 34.
    H. Wunderlich, C. Wunderlich, K. Singer, F. Schmidt-Kaler, Phys. Rev. A 79, 052324 (2009) ADSCrossRefGoogle Scholar
  35. 35.
    C.A. Harper, Handbook of Thick Film Hybrid Microelectronics (McGraw-Hill Book, New York, 1974) Google Scholar
  36. 36.
    T.K. Gupta, Handbook of Thick- and Thin-Film Hybrid Microelectronics (Wiley, New York, 2005) Google Scholar
  37. 37.
    M. Merkel, K.-H. Thomas, Taschenbuch der Werkstoffe, 7th edn. (Carl Hanser, Munich, 2008) Google Scholar
  38. 38.
    C.D. Park, S.M. Chung, X.H. Liu, Y.L. Li, J. Vac. Sci. Technol. 26, 1166 (2008) CrossRefGoogle Scholar
  39. 39.
    I. Weisgerber, Aufbau eines Magnetfeldsystems, eines Helixresonators und eines optischen Strahlenganges. Dipl., University of Hamburg, Hamburg (2003) Google Scholar
  40. 40.
    W.W. Macalpine, R.O. Schildknecht, Proc. IRE 47, 2099 (1959) CrossRefGoogle Scholar
  41. 41.
    P. Vizmuller, R.F. Design Guide, Systems, Circuits, and Equations (Artech House, London, 1995) Google Scholar
  42. 42.
    A.I. Zverev, Handbook of Filter Synthesis (Wiley, New York, 1967) Google Scholar
  43. 43.
    Electric field generator, German Patent application de 10 2011 001 399.7, filed on march 18, 2011 Google Scholar
  44. 44.
    C. Balzer, A. Braun, T. Hannemann, C. Paape, M. Ettler, W. Neuhauser, C. Wunderlich, Phys. Rev. A 73, 041407 (2006) ADSCrossRefGoogle Scholar
  45. 45.
    M. Johanning, A. Braun, D. Eiteneuer, C. Paape, C. Balzer, W. Neuhauser, C. Wunderlich, Appl. Phys. B 103, 327 (2011) ADSCrossRefGoogle Scholar
  46. 46.
    D. Kielpinski, M. Cetina, J.A. Cox, F.X. Kärtner, Opt. Lett. 31, 757 (2006) ADSCrossRefGoogle Scholar
  47. 47.
    C. Schneider, Entwicklung eines Objektivs hoher numerischer Apertur zum Nachweis der Resonanzfluoreszenz einzelner gespeicherter Ionen. M.Sc., University of Siegen, Siegen (2007) Google Scholar
  48. 48.
    D. Eiteneuer, Bau und Charakterisierung einer Ytterbium-Quelle für mikrostruktierte Ionenfallen. M.Sc., University of Siegen, Siegen (2009) Google Scholar
  49. 49.
    C. Wunderlich, G. Morigi, D. Reiß, Phys. Rev. A 72, 023421 (2005) ADSCrossRefGoogle Scholar
  50. 50.
    A. Albrecht, A. Retzker, C. Wunderlich, M.B. Plenio, New J. Phys. 13 (2011) Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • D. Kaufmann
    • 1
  • T. Collath
    • 1
  • M. T. Baig
    • 1
  • P. Kaufmann
    • 1
  • E. Asenwar
    • 1
  • M. Johanning
    • 1
  • C. Wunderlich
    • 1
    Email author
  1. 1.Department of Physics, Faculty IV: Science and TechnologyUniversity of SiegenSiegenGermany

Personalised recommendations