Applied Physics B

, Volume 107, Issue 1, pp 157–162 | Cite as

Analysis and optimization of propagation losses in LiNbO3 optical waveguides produced by swift heavy-ion irradiation

  • M. Jubera
  • J. Villarroel
  • A. García-Cabañes
  • M. Carrascosa
  • J. Olivares
  • F. Agullo-López
  • A. Méndez
  • J. B. Ramiro
Article

Abstract

The propagation losses (PL) of lithium niobate optical planar waveguides fabricated by swift heavy-ion irradiation (SHI), an alternative to conventional ion implantation, have been investigated and optimized. For waveguide fabrication, congruently melting LiNbO3 substrates were irradiated with F ions at 20 MeV or 30 MeV and fluences in the range 1013–1014 cm−2. The influence of the temperature and time of post-irradiation annealing treatments has been systematically studied. Optimum propagation losses lower than 0.5 dB/cm have been obtained for both TE and TM modes, after a two-stage annealing treatment at 350 and 375C. Possible loss mechanisms are discussed.

References

  1. 1.
    J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, A. García-Cabañes, Appl. Phys. Lett. 86, 183501 (2005) ADSCrossRefGoogle Scholar
  2. 2.
    J. Olivares, A. Gracia-Navarro, A. Méndez, F. Agulló-López, G. García, A. García-Cabañes, M. Carrascosa, Nucl. Instrum. Methods Phys. Res. B 257, 765 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, M. Carrascosa, J. Appl. Phys. 101, 033512 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    P.D. Townsend, P.J. Chandler, L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, Cambridge, 1994) CrossRefGoogle Scholar
  5. 5.
    F. Cheng, X.-L. Wang, K.-M. Wang, Opt. Mater. 29, 1523 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    F. Cheng, J. Appl. Phys. 106, 081101 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    J. Villarroel, M. Carrascosa, A. García-Cabañes, O. Caballero-Calero, M. Crespillo, J. Olivares, Appl. Phys. B 95, 429 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    A. Majkic, M. Koechlin, G. Poberaj, P. Günter, Opt. Express 16, 8769 (2008) ADSCrossRefGoogle Scholar
  9. 9.
  10. 10.
    A. García-Cabañes, E. Diéguez, J.M. Cabrera, F. Agulló-López, J. Phys., Condens. Matter 1, 6453 (1989) ADSCrossRefGoogle Scholar
  11. 11.
    Y. Okamura, S. Yoshinaka, S. Yamamoto, Appl. Opt. 22, 3892 (1983) ADSCrossRefGoogle Scholar
  12. 12.
    G. Gotz, H. Karge, Nucl. Instrum. Methods Phys. Res. B 209/210, 1079 (1983) CrossRefGoogle Scholar
  13. 13.
    A. Boudrioua, J.C. Loulergue, F. Laurell, P. Moretti, J. Opt. Soc. Am. 18, 1832 (2001) ADSCrossRefGoogle Scholar
  14. 14.
    G.G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, R. Guzzi, J. Appl. Phys. 92, 6477 (2002) ADSCrossRefGoogle Scholar
  15. 15.
    G.G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, R. Guzzi, J. Appl. Phys. 96, 242 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    K. Peithmann, M.R. Zamani-Meymian, M. Haaks, K. Maier, B. Andreas, K. Buse, H. Modrow, Appl. Phys. B 82, 419 (2006) ADSCrossRefGoogle Scholar
  17. 17.
    K. Peithmann, P.D. Eversheim, J. Goetze, M. Haaks, H. Hattermann, S. Haubrich, F. Hinterberger, L. Jentjens, W. Mader, N.L. Raeth, H. Schmid, M.R. Zamani-Meymian, K. Maier, Appl. Phys. B 105, 113 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    A. Rivera, M.L. Crespillo, J. Olivares, G. García, F. Agulló-López, Nucl. Instrum. Methods Phys. Res. B 268, 2249 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    J. Ramiro-Díaz, A. Alcazar de Velasco, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 380, 71 (2009) Google Scholar
  20. 20.
    J. Villarroel, J. Carnicero, F. Luedtke, M. Carrascosa, A. García-Cabañes, J.M. Cabrera, A. Alcazar, B. Ramiro, Opt. Express 18, 20852 (2010) CrossRefGoogle Scholar
  21. 21.
    M.L. Crespillo, O. Caballero-Calero, V. Joco, A. Ribera, P. Herrero, J. Olivares, F. Agulló-López, Appl. Phys. A 104, 1143 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    B. Vincent, A. Boudrioua, R. Kremer, P. Moretti, Opt. Commun. 247, 461 (2005) ADSCrossRefGoogle Scholar
  23. 23.
    B. Vincent, R. Kremer, A. Boudrioua, P. Moretti, Y.C. Zhang, C.C. Hsu, L.H. Peng, Appl. Phys. B 89, 235 (2007) ADSCrossRefGoogle Scholar
  24. 24.
    A. Dazzi, P. Mathey, P. Lompré, P. Jullien, Opt. Commun. 149, 135 (1998) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • M. Jubera
    • 1
  • J. Villarroel
    • 1
  • A. García-Cabañes
    • 1
  • M. Carrascosa
    • 1
  • J. Olivares
    • 2
    • 3
  • F. Agullo-López
    • 1
    • 2
  • A. Méndez
    • 4
  • J. B. Ramiro
    • 4
  1. 1.Departamento de Física de MaterialesUniversidad Autónoma de MadridMadridSpain
  2. 2.Centro de Microanálisis de Materiales (CMAM)Universidad Autónoma de MadridMadridSpain
  3. 3.Instituto de OpticaCSICMadridSpain
  4. 4.Departamento de AerotecniaUniversidad Politécnica de MadridMadridSpain

Personalised recommendations