Applied Physics B

, Volume 107, Issue 1, pp 221–228 | Cite as

Molecular dynamics simulation of thermal accommodation coefficients for laser-induced incandescence sizing of nickel particles

Article

Abstract

Extending time-resolved laser-induced incandescence (TiRe-LII), a diagnostic traditionally used to characterize soot and other carbonaceous particles, into a tool for measuring metal nanoparticles requires knowledge of the thermal accommodation coefficient for those systems. This parameter can be calculated using molecular dynamics (MD) simulations provided the interatomic potential is known between the gas molecule and surface atoms, but this is not often the case for many gas/surface combinations. In this instance, researchers often resort to the Lorentz–Berthelot combination rules to estimate the gas/surface potential using parameters derived for homogeneous systems. This paper compares this methodology with a more accurate approach based on ab initio derived potentials to estimate the thermal accommodation coefficient for laser-energized nickel nanoparticles in argon. Results show that the Lorentz–Berthelot combining rules overestimate the true potential well depth by an order of magnitude, resulting in perfect thermal accommodation, whereas the more accurate ab initio derived potential predicts an accommodation coefficient in excellent agreement with experimentally-determined values for other metal nanoparticle aerosols. This result highlights the importance of accurately characterizing the gas/surface potential when using MD to estimate thermal accommodation coefficients for TiRe-LII.

Notes

Acknowledgements

The authors are grateful to Professor Stefan Will at Universität Bremen for suggesting this research and for his encouragement. This work was made possible by the facilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET) and Compute/Calcul Canada, and financial support from the Natural Science and Engineering Research Council (NSERC).

References

  1. 1.
    F.E. Kruis, H. Fissan, A. Peled, J. Aerosol Sci. 29, 511 (1998) CrossRefGoogle Scholar
  2. 2.
    T. Saito, S. Ohshima, W.C. Xu, H. Ago, M. Yumura, S. Iijima, J. Phys. Chem. B 109, 10647 (2005) CrossRefGoogle Scholar
  3. 3.
    M.F. Becker, J.R. Brock, H. Cai, D.E. Henneke, J.W. Ketoc, J. Lee, W.T. Nichols, H.D. Glicksman, Nanostruct. Mater. 10, 853 (1998) CrossRefGoogle Scholar
  4. 4.
    K. Wegner, B. Walker, S. Tsantilis, S.E. Pratsinis, Chem. Eng. Sci. 57, 1753 (2002) CrossRefGoogle Scholar
  5. 5.
    M.T. Swihart, Curr. Opin. Colloid Interface Sci. 8, 127 (2003) CrossRefGoogle Scholar
  6. 6.
    D.R. Snelling, G.J. Smallwood, F. Liu, Ö.L. Gülder, W.D. Bachalo, Appl. Opt. 44, 6773 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    S. Schraml, S. Will, A. Leipertz, SAE Technical Paper 1999-01-0146 (1999) Google Scholar
  8. 8.
    B. Kock, T. Eckhardt, P. Roth, Proc. Combust. Inst. 29, 2775 (2002) CrossRefGoogle Scholar
  9. 9.
    S. Kuhlmann, J. Reimann, S. Will, J. Aerosol Sci. 37, 1696 (2006) CrossRefGoogle Scholar
  10. 10.
    R. Vander Wal, T. Ticich, J. West, Appl. Opt. 38, 5867 (1999) ADSCrossRefGoogle Scholar
  11. 11.
    A. Filippov, M. Markus, P. Roth, J. Aerosol Sci. 30, 71 (1999) CrossRefGoogle Scholar
  12. 12.
    Y. Murakami, T. Sugatani, Y. Nosaka, J. Phys. Chem. A 109, 8994 (2005) CrossRefGoogle Scholar
  13. 13.
    R. Starke, B. Kock, P. Roth, Shock Waves 12, 351 (2003) ADSCrossRefGoogle Scholar
  14. 14.
    B.F. Kock, C. Kayan, J. Knipping, H.R. Orthner, P. Roth, Proc. Combust. Inst. 30, 1689 (2005) CrossRefGoogle Scholar
  15. 15.
    W.C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles (Wiley, New York, 1982) Google Scholar
  16. 16.
    A. Eremin, E. Gurentsov, C. Schulz, J. Phys. D, Appl. Phys. 41, 055203 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    K. Daun, G. Smallwood, F. Liu, Appl. Phys. B, Lasers Opt. 94, 39 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    K. Daun, Int. J. Heat Mass Transf. 52, 5081 (2009) CrossRefMATHGoogle Scholar
  19. 19.
    A.M. Kamat, A.C.T. van Duin, A. Yakovlev, J. Phys. Chem. A 114, 12561 (2010) CrossRefGoogle Scholar
  20. 20.
    J. Reimann, H. Oltmann, S. Will, E. Bassano, E.L. Carotenuto, S. Lösch, B.H. Günther, in Proceedings of the World Congress on Particle Technology, vol. 6, Nuremberg, Germany (2010) Google Scholar
  21. 21.
    T. Çagin, Y. Kimura, Y. Qi, H. Li, H. Ikeda, W.L. Johnson, W.A. Goddard III, MRS Symp. Ser. 554, 43 (1999), CrossRefGoogle Scholar
  22. 22.
    Y. Qi, T. Çagin, Y. Kimura, W.A. Goddard III, Phys. Rev. B 59, 3527 (1999) ADSCrossRefGoogle Scholar
  23. 23.
    A. Sutton, J. Chen, Philos. Mag. Lett. 61, 139 (1990) ADSCrossRefGoogle Scholar
  24. 24.
    H. Rafii-Tabar, A. Sutton, Philos. Mag. Lett. 63, 217 (1991) ADSCrossRefGoogle Scholar
  25. 25.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1989) Google Scholar
  26. 26.
    R. Vander Wal, Appl. Phys. B, Lasers Opt. 96, 601 (2009) ADSCrossRefGoogle Scholar
  27. 27.
    A. Brasil, T. Farias, M. Carvalho, J. Aerosol Sci. 30, 1379 (1999) CrossRefGoogle Scholar
  28. 28.
    F. Luo, X.-R. Chen, L.-C. Cai, G.-F. Ji, J. Chem. Eng. Data 55, 5149 (2010) CrossRefGoogle Scholar
  29. 29.
    V. Chirita, B. Pailthorpe, R. Collins, J. Phys. D, Appl. Phys. 26, 133 (1993) ADSCrossRefGoogle Scholar
  30. 30.
    Y. Cheng, C. Lee, Phys. Res., B Beam Interact. Mater. Atoms 267, 1428 (2009). doi:10.1016/j.nimb.2009.01.056 CrossRefGoogle Scholar
  31. 31.
    P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, an Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Vienna, 2001) Google Scholar
  32. 32.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  33. 33.
    J. Delhommelle, P. Millié, Mol. Phys. 99, 619 (2001) ADSCrossRefGoogle Scholar
  34. 34.
    D. Boda, D. Henderson, Mol. Phys. 106, 2367 (2008) ADSCrossRefGoogle Scholar
  35. 35.
    J. Forsman, C.E. Woodward, Langmuir 26, 4555 (2010) CrossRefGoogle Scholar
  36. 36.
    D. Chase, M. Manning, J. Morgan, G. Nathanson, R.B. Gerber, J. Chem. Phys. 113, 9279 (2000) ADSCrossRefGoogle Scholar
  37. 37.
    H. Casimir, D. Polder, Phys. Rev. 73, 360 (1948) ADSCrossRefMATHGoogle Scholar
  38. 38.
    J. Crosse, S.Å. Ellingsen, K. Clements, S.Y. Buhmann, S. Scheel, Phys. Rev. A 82, 010901 (2010) ADSCrossRefGoogle Scholar
  39. 39.
    A.W. Rodriguez, F. Capasso, S.G. Johnson, Nat. Photonics 5, 211 (2011) ADSCrossRefGoogle Scholar
  40. 40.
    E. Koopman, C. Lowe, J. Chem. Phys. 124, 204103 (2006) ADSCrossRefGoogle Scholar
  41. 41.
    C. Lowe, Europhys. Lett. 47, 145 (1999) ADSCrossRefGoogle Scholar
  42. 42.
    P. Nikunen, M. Karttunen, I. Vattulainen, Comput. Phys. Commun. 153, 407 (2003) ADSCrossRefGoogle Scholar
  43. 43.
    M. Knudsen, The Kinetic Theory of Gases: Some Modern Aspects (Methuen, London, 1952) Google Scholar
  44. 44.
    M.D. Ellison, C.M. Matthews, R.N. Zare, J. Chem. Phys. 112, 1975 (2000) ADSCrossRefGoogle Scholar
  45. 45.
    C. Cercignani, Transp. Theory Stat. Phys. 2, 27 (1972) MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    R. Lord, J. Phys. D, Appl. Phys. 25, 327 (1992) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Department of Applied MathematicsUniversity of Western OntarioLondonCanada
  3. 3.Department of ChemistryUniversity of WaterlooWaterlooCanada

Personalised recommendations