Applied Physics B

, Volume 108, Issue 1, pp 31–38 | Cite as

Optical magnetic resonance imaging with an ultra-narrow optical transition

  • S. Kato
  • K. Shibata
  • R. Yamamoto
  • Y. Yoshikawa
  • Y. Takahashi
Article

Abstract

We demonstrate optical magnetic resonance imaging (OMRI) of a Bose–Einstein condensate of ytterbium atoms trapped in a one-dimensional (1D) optical lattice using an ultra-narrow optical transition 1S03P2 (m=−2). We developed a vacuum chamber equipped with a thin glass cell, which provides high optical access and allows a compact design of magnetic coils. A line shape of a measured spectrum of the OMRI is well described by a spatial distribution of the atoms in a 1D optical lattice with the Thomas–Fermi approximation and an applied magnetic field gradient. The observed spectrum exhibits a periodic structure corresponding to the optical lattice periodicity.

References

  1. 1.
    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008) ADSCrossRefGoogle Scholar
  2. 2.
    N. Gemelke, X. Zhang, C.-L. Hung, C. Chin, Nature 460, 995 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    W.S. Bakr, J.I. Gillen, A. Peng, S. Fölling, M. Greiner, Nature 462, 74 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    J.F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, S. Kuhr, Nature 467, 68 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    S. Fölling, A. Widera, T. Müller, F. Gerbier, I. Bloch, Phys. Rev. Lett. 97, 060403 (2006) CrossRefGoogle Scholar
  6. 6.
    M. Karski, L. Förster, J.-M. Choi, A. Steffen, N. Belmechri, W. Alt, D. Meschede, A. Widera, New J. Phys. 12, 065027 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    N. Brahms, T.P. Purdy, D.W.C. Brooks, T. Botter, D.M. Stamper-Kurn, Nat. Phys. 7, 604 (2011) CrossRefGoogle Scholar
  8. 8.
    A. Derevianko, C.C. Cannon, Phys. Rev. A 70, 062319 (2004) ADSCrossRefGoogle Scholar
  9. 9.
    K. Shibata, S. Kato, A. Yamaguchi, S. Uetake, Y. Takahashi, Appl. Phys. B 97, 753 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, Y. Takahashi, Phys. Rev. Lett. 91, 040404 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    S. Uetake, A. Yamaguchi, S. Kato, Y. Takahashi, Appl. Phys. B 92, 33 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    T.L. Gustavson, A.P. Chikkatur, A.E. Leanhardt, A. Görlitz, S. Gupta, D.E. Pritchard, W. Ketterle, Phys. Rev. Lett. 88, 020401 (2001) CrossRefGoogle Scholar
  13. 13.
    A. Yamaguchi, S. Uetake, S. Kato, H. Ito, Y. Takahashi, New J. Phys. 12, 103001 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    A. Yamaguchi, S. Uetake, Y. Takahashi, Appl. Phys. B 91, 57 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    T.C. Killian, Phys. Rev. A 61, 033611 (2000) ADSCrossRefGoogle Scholar
  16. 16.
    A. Görlitz, T.L. Gustavson, A.E. Leanhardt, R. Löw, A.P. Chikkatur, S. Gupta, S. Inouye, D.E. Pritchard, W. Ketterle, Phys. Rev. Lett. 90, 090401 (2003) CrossRefGoogle Scholar
  17. 17.
    J. Stenger, S. Inouye, A.P. Chikkatur, D.M. Stamper-Kurn, D.E. Pritchard, W. Ketterle, Phys. Rev. Lett. 82, 4569 (1999) ADSCrossRefGoogle Scholar
  18. 18.
    K. Enomoto, M. Kitagawa, K. Kasa, S. Tojo, Y. Takahashi, Phys. Rev. Lett. 98, 203201 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    M. Kitagawa, K. Enomoto, K. Kasa, Y. Takahashi, R. Ciurylo, P. Naidon, P. Julienne, Phys. Rev. A 77, 012719 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    G. Juzeliūnas, M. Mašalas, Phys. Rev. A 63, 061602 (2001) ADSCrossRefGoogle Scholar
  21. 21.
    P. Pedri, L. Pitaevskii, S. Stringari, C. Fort, S. Burger, F.S. Cataliotti, P. Maddaloni, F. Minardi, M. Inguscio, Phys. Rev. Lett. 87, 220401 (2001) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • S. Kato
    • 1
  • K. Shibata
    • 1
  • R. Yamamoto
    • 1
  • Y. Yoshikawa
    • 1
  • Y. Takahashi
    • 1
    • 2
  1. 1.Department of Physics, Graduate School of ScienceKyoto UniversityKyotoJapan
  2. 2.CRESTJapan Science and Technology AgencySaitamaJapan

Personalised recommendations