Applied Physics B

, Volume 107, Issue 4, pp 883–889 | Cite as

Laser ablation loading of a radiofrequency ion trap

  • K. Zimmermann
  • M. V. Okhapkin
  • O. A. Herrera-Sancho
  • E. Peik
Article

Abstract

The production of ions via laser ablation for the loading of radiofrequency (RF) ion traps is investigated using a nitrogen laser with a maximum pulse energy of 0.17 mJ and a peak intensity of about 250 MW/cm2. A time-of-flight mass spectrometer is used to measure the ion yield and the distribution of the charge states. Singly charged ions of elements that are presently considered for the use in optical clocks or quantum logic applications could be produced from metallic samples at a rate of the order of magnitude 105 ions per pulse. A linear Paul trap was loaded with Th+ ions produced by laser ablation. An overall ion production and trapping efficiency of 10−7 to 10−6 was attained. For ions injected individually, a dependence of the capture probability on the phase of the RF field has been predicted. In the experiment this was not observed, presumably because of collective effects within the ablation plume.

Notes

Acknowledgements

We thank Chr. Tamm for helpful discussions and D. Griebsch and Th. Leder for their expert technical support. This work was partially supported by DFG within the cluster of excellence QUEST. OAHS acknowledges support from ITCR, MICIT, and DAAD.

References

  1. 1.
    E. Fischer, Z. Phys. 156, 1 (1959) ADSCrossRefGoogle Scholar
  2. 2.
    W. Neuhauser, M. Hohenstatt, P. Toschek, H. Dehmelt, Phys. Rev. Lett. 41, 233 (1978) ADSCrossRefGoogle Scholar
  3. 3.
    N. Kjaergaard, L. Hornekaer, A.M. Thommesen, Z. Videsen, M. Drewsen, Appl. Phys. B 71, 207 (2000) ADSCrossRefGoogle Scholar
  4. 4.
    S. Gulde, D. Rotter, P. Barton, F. Schmidt-Kaler, R. Blatt, W. Hogervorst, Appl. Phys. B 73, 861 (2001) ADSCrossRefGoogle Scholar
  5. 5.
    R.J. Hendricks, D.M. Grant, P.F. Herskind, A. Dantan, M. Drewsen, Appl. Phys. B 88, 507 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    K. Sheridan, W. Lange, M. Keller, Appl. Phys. B 104, 755 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    S.G. Porsev, V.V. Flambaum, E. Peik, Chr. Tamm, Phys. Rev. Lett. 105, 182501 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    R.D. Knight, Appl. Phys. Lett. 38, 221 (1981) ADSCrossRefGoogle Scholar
  9. 9.
    V.H.S. Kwong, Phys. Rev. A 39, 4451 (1989) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Y. Hashimoto, L. Matsuoka, H. Osaki, Y. Fukushima, S. Hasegawa, Jpn. J. Appl. Phys. 45, 7108 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    D.R. Leibrandt, R.J. Clark, J. Labaziewicz, P. Antohi, W. Bakrt, K.R. Brown, I.L. Chuang, Phys. Rev. A 76, 055403 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    T. Kwapien, U. Eichmann, W. Sandner, Phys. Rev. A 75, 063418 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    C.J. Campbell, A.V. Steele, L.R. Churchill, M.V. DePalatis, D.E. Naylor, D.N. Matsukevich, A. Kuzmich, M.S. Chapman, Phys. Rev. Lett. 102, 233004 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    G.C. Eiden, A.W. Garrett, M.E. Cisper, N.S. Nogar, P.H. Hemberger, Int. J. Mass Spectrom. 136, 119 (1994) ADSCrossRefGoogle Scholar
  15. 15.
    D.B. Robb, M.W. Blades, Int. J. Mass Spectrom. 190/191, 69 (1999) CrossRefGoogle Scholar
  16. 16.
    P.R. Willmott, J.R. Huber, Rev. Mod. Phys. 72, 315 (2000) ADSCrossRefGoogle Scholar
  17. 17.
    B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996) ADSCrossRefGoogle Scholar
  18. 18.
    B. Thestrup, B. Toftmann, J. Schou, B. Doggett, J.G. Lunney, Appl. Surf. Sci. 197, 175 (2002) ADSCrossRefGoogle Scholar
  19. 19.
    L. Laska et al., Plasma Phys. Control. Fusion 45, 585 (2003) ADSCrossRefGoogle Scholar
  20. 20.
    W.C. Wiley, I.H. McLaren, Rev. Sci. Instrum. 26, 1150 (1955) ADSCrossRefGoogle Scholar
  21. 21.
    W. Paul, Rev. Mod. Phys. 62, 531 (1990) ADSCrossRefGoogle Scholar
  22. 22.
    O. Chung-Sing, H.A. Schuessler, J. Appl. Phys. 52, 1157 (1981) ADSCrossRefGoogle Scholar
  23. 23.
    O. Chung-Sing, H.A. Schuessler, Appl. Phys. B 27, 129 (1982) ADSCrossRefGoogle Scholar
  24. 24.
    R.R. Vargas, R.A. Yost, in Practical Aspects of Ion Trap Mass Spectrometry, vol. II, ed. by R.E. March, J.F.J. Todd (CRC Press, Boca Raton, 1995) Google Scholar
  25. 25.
    S. Schwarz, Lect. Notes Phys. 749, 97 (2008) Google Scholar
  26. 26.
    W. Kälber, G. Meisel, J. Rink, R.C. Thompson, J. Mod. Opt. 39, 335 (1992) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • K. Zimmermann
    • 1
  • M. V. Okhapkin
    • 1
  • O. A. Herrera-Sancho
    • 1
  • E. Peik
    • 1
  1. 1.Physikalisch-Technische BundesanstaltBraunschweigGermany

Personalised recommendations