Applied Physics B

, Volume 107, Issue 4, pp 1159–1165 | Cite as

Interaction of a laser with a qubit in thermal motion and its application to robust and efficient readout

  • U. PoschingerEmail author
  • A. Walther
  • M. Hettrich
  • F. Ziesel
  • F. Schmidt-Kaler


We present a detailed theoretical and experimental study on the optical control of a trapped-ion qubit subject to thermally induced fluctuations of the Rabi frequency. The coupling fluctuations are caused by thermal excitation on three harmonic oscillator modes. We develop an effective Maxwell–Boltzmann theory which leads to a replacement of several quantized oscillator modes by an effective continuous probability distribution function for the Rabi frequency. The model is experimentally verified for driving the quadrupole transition with resonant square pulses. This allows for the determination of the ion temperature with an accuracy of better than 2% of the temperature pertaining to the Doppler cooling limit T D over a range from 0.5T D to 5T D . The theory is then applied successfully to model experimental data for rapid adiabatic passage (RAP) pulses. We apply the model and the obtained experimental parameters to elucidate the robustness and efficiency of the RAP process by means of numerical simulations.


Excitation Pulse Rabi Frequency Motional Mode Rabi Oscillation Quadrupole Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge financial support by the European commission within the IP AQUTE and by IARPA with the SQIP program.


  1. 1.
    N. Timoney, V. Elman, S. Glaser, C. Weiß, M. Johanning, W. Neuhauser, C. Wunderlich, Phys. Rev. A 77, 052334 (2008) ADSCrossRefGoogle Scholar
  2. 2.
    G. Kirchmair, J. Benhelm, F. Zähringer, R. Gerritsma, C.F. Roos, R. Blatt, New J. Phys. 11, 023002 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    U.G. Poschinger, G. Huber, F. Ziesel, M. Deiss, M. Hettrich, S.A. Schulz, G. Poulsen, M. Drewsen, R.J. Hendricks, K. Singer, F. Schmidt-Kaler, J. Phys. B, At. Mol. Opt. Phys. 42, 154013 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    A. Kreuter, C. Becher, G.P.T. Lancaster, A.B. Mundt, C. Russo, H. Häffner, C. Roos, W. Hänsel, F. Schmidt-Kaler, R. Blatt, Phys. Rev. A 71, 032504 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    C. Wunderlich, Th. Hannemann, T. Koerber, H. Haeffner, Ch. Roos, W. Haensel, R. Blatt, F. Schmidt-Kaler, J. Mod. Opt. 54, 1541 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    D. Leibfried, R. Blatt, C. Monroe, D.J. Wineland, Rev. Mod. Phys. 75, 281 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    C. Roos, PhD thesis, Leopold-Franzens-Universität Innsbruck, p. 117, 2000 Google Scholar
  8. 8.
    S. Schulz, U. Poschinger, K. Singer, F. Schmidt-Kaler, Fortschr. Phys. 54, 648 (2006) CrossRefGoogle Scholar
  9. 9.
    S. Schulz, U. Poschinger, F. Ziesel, F. Schmidt-Kaler, New J. Phys. 10, 045007 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    R.J. Epstein, S. Seidelin, D. Leibfried, J.H. Wesenberg, J.J. Bollinger, J.M. Amini, R.B. Blakestad, J. Britton, J.P. Home, W.M. Itano, J.D. Jost, E. Knill, C. Langer, R. Ozeri, N. Shiga, D.J. Wineland, Phys. Rev. A 76, 033411 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    J.H. Wesenberg, R.J. Epstein, D. Leibfried, R.B. Blakestad, J. Britton, J.P. Home, W.M. Itano, J.D. Jost, E. Knill, C. Langer, R. Ozeri, S. Seidelin, D.J. Wineland, Phys. Rev. A 76, 053416 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    U.G. Poschinger, A. Walther, K. Singer, F. Schmidt-Kaler, Phys. Rev. Lett. 105, 263602 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    D. Hayes, S.M. Clark, S. Debnath, D. Hucul, Q. Quraishi, C. Monroe, arXiv:1104.1347 [quant-ph] (2011)
  14. 14.
    V. Nebendahl, H. Häffner, C.F. Roos, Phys. Rev. A 79, 012312 (2009) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • U. Poschinger
    • 1
    Email author
  • A. Walther
    • 1
  • M. Hettrich
    • 1
  • F. Ziesel
    • 1
  • F. Schmidt-Kaler
    • 1
  1. 1.Institut für QuantenphysikUniversität MainzMainzGermany

Personalised recommendations