Applied Physics B

, Volume 106, Issue 3, pp 569–575 | Cite as

High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system

  • K. N. Gabet
  • R. A. Patton
  • N. Jiang
  • W. R. Lempert
  • J. A. Sutton
Rapid Communication


In this manuscript, we demonstrate high-speed (10-kHz-acquisition rate) planar laser-induced fluorescence (PLIF) imaging of formaldehyde (CH2O) in turbulent non-premixed flames. Using the unique pulse-burst laser system (PBLS) at Ohio State University, high-energy laser pulses (∼100 mJ/pulse) at 355 nm with 100 μs pulse separation are generated and used to measure the time-varying CH2O distributions in attached and lifted methane-based turbulent flames. By taking advantage of the tunable, narrow spectral linewidth of the PBLS at 355 nm, the laser output can be frequency-tuned and adjusted to overlap with absorption “peaks” within the tail of the A–X transition of CH2O near 355 nm, thus increasing the acquired signal by as much as a factor of three. The reported signal-to-noise ratio (SNR) exceeds 55, which represents one of the highest SNR reported to date for kilohertz-rate imaging of scalars for comparable spatial resolution. Potential applications and pairings with other diagnostic approaches for high-speed reaction rate and multi-scalar imaging also are discussed.



Acknowledgment is made to the Air Force Office of Scientific Research (Julian Tishkoff/Chiping Li—Technical Monitors) and to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research. The authors acknowledge previous financial support from NASA (Paul Danehy—Technical Monitor), the U.S. Air Force Research Laboratory—Propulsion Directorate (James Gord—Technical Monitor), the Air Force Office of Scientific Research (J. Schmisseur—Technical Monitor), and the National Science Foundation Major Research Instrumentation program for the development of the pulse-burst laser system. KNG acknowledges support from the Department of Energy (DOE) Office of Science Graduate Fellowship Program administered by the Oak Ridge Institute for Science and Education for the DOE.


  1. 1.
    A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd edn. (Gordon and Breach, New York, 1996) Google Scholar
  2. 2.
    K. Kohse-Hoinghaus, J.B. Jeffries (eds.), Applied Combustion Diagnostics (Taylor and Francis, London, 2002) Google Scholar
  3. 3.
    P.H. Paul, H.N. Najm, Proc. Combust. Inst. 27, 43 (1998) Google Scholar
  4. 4.
    S. Böckle, J. Kazenwadel, T. Kunzelmann, D.-I. Shin, C. Schulz, J. Wolfrum, Proc. Combust. Inst. 28, 279 (2000) CrossRefGoogle Scholar
  5. 5.
    B.O. Ayoola, R. Balachandran, J.H. Frank, E. Mastorakos, C.F. Kaminski, Combust. Flame 144, 1 (2006) CrossRefGoogle Scholar
  6. 6.
    A. Fayoux, K. Zähringer, O. Gicquel, J.C. Rolon, Proc. Combust. Inst. 30, 251 (2005) CrossRefGoogle Scholar
  7. 7.
    M.J. Dunn, A.R. Masri, R.W. Bilger, R.S. Barlow, Flow Turbul. Combust. 85, 621 (2010) MATHCrossRefGoogle Scholar
  8. 8.
    R.L. Gordon, A.R. Masri, E. Mastorakos, Combust. Flame 155, 181 (2008) CrossRefGoogle Scholar
  9. 9.
    R.L. Gordon, A.R. Masri, E. Mastorakos, Combust. Theory Model. 13, 645 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    A. Joedicke, N. Peters, M. Mansour, Proc. Combust. Inst. 30, 901 (2005) CrossRefGoogle Scholar
  11. 11.
    B. Bohm, C. Heeger, R.L. Gordon, A. Dreizler, Flow Turbul. Combust. 86, 313 (2011) CrossRefGoogle Scholar
  12. 12.
    W. Paa, W. Triebel, in SPIE Proceedings, Solid State Lasers and Amplifiers, ed. by A. Sennaroglu, J.G. Fujimoto, C.R. Pollack, September 2004 Google Scholar
  13. 13.
    W. Paa, D. Mueller, A. Gawlik, W. Triebel, in SPIE Proceedings, Optical Diagnostics, ed. by L.M. Hanssen, P.V. Farrell, August 2005 Google Scholar
  14. 14.
    A. Burkert, W. Paa, G. Schmidl, W. Triebel, Ch. Eigenbrod, Acta Astronaut. 55, 199 (2004) ADSCrossRefGoogle Scholar
  15. 15.
    J. Olofsson, M. Richter, M. Alden, M. Auge, Rev. Sci. Instrum. 77, 013104 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    B.S. Thurow, N. Jiang, M. Samimy, W.R. Lempert, Appl. Opt. 43, 5064 (2005) ADSCrossRefGoogle Scholar
  17. 17.
    J.D. Miller, M. Slipchenko, T.R. Meyer, N. Jiang, W.R. Lempert, J.R. Gord, Opt. Lett. 34, 1309 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    N. Jiang, M. Webster, W.R. Lempert, Appl. Opt. 48, B23 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    K.N. Gabet, N. Jiang, W.R. Lempert, J.A. Sutton, Appl. Phys. B 101, 1 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    N. Jiang, R.A. Patton, W.R. Lempert, J.A. Sutton, Proc. Combust. Inst. 33, 767 (2011) CrossRefGoogle Scholar
  21. 21.
    R.A. Patton, K.N. Gabet, N. Jiang, W.R. Lempert, J.A. Sutton, Appl. Phys. B (2011). doi: 10.1007/s00340-011-4658-1 Google Scholar
  22. 22.
    N. Jiang, M. Webster, W.R. Lempert, J.D. Miller, T.R. Meyer, C.B. Ivey, P.M. Danehy, Appl. Opt. 50, A20 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    B. Thurow, N. Jiang, W. Lempert, M. Samimy, AIAA J. 43, 500 (2005) ADSCrossRefGoogle Scholar
  24. 24.
    N. Jiang, M. Nishihara, W.R. Lempert, Appl. Phys. Lett. 97, 221103 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    P. Wu, W.R. Lempert, R.B. Miles, AIAA J. 38, 672 (2000) ADSCrossRefGoogle Scholar
  26. 26.
    J.E. Harrington, K.C. Smyth, Chem. Phys. Lett. 202, 196 (1993) ADSCrossRefGoogle Scholar
  27. 27.
    S. Böckle, J. Kazenwadel, T. Kunzelmann, D.-I. Shin, C. Schulz, Appl. Phys. B 70, 733 (2000) ADSCrossRefGoogle Scholar
  28. 28.
    A. Burkert, D. Grebner, D. Müller, W. Triebel, J. König, Proc. Combust. Inst. 28, 1655 (2000) CrossRefGoogle Scholar
  29. 29.
    R. Schießl, P. Pixner, A. Dreizler, U. Mass, Combust. Sci. Technol. 149, 339 (1999) CrossRefGoogle Scholar
  30. 30.
    D.I. Shin, T. Dreier, J. Wolfrum, Appl. Phys. B 72, 257 (2001) ADSCrossRefGoogle Scholar
  31. 31.
    R. Bombach, B. Käppelli, Appl. Phys. B 68, 251 (1999) ADSCrossRefGoogle Scholar
  32. 32.
    R.J.H. Klein-Douwel, J. Luque, J.B. Jeffries, G.P. Smith, D.R. Crosley, Appl. Opt. 39, 3712 (2000) ADSCrossRefGoogle Scholar
  33. 33.
    J. Luque, J.B. Jeffries, G.P. Smith, D.R. Crosley, Appl. Phys. B 73, 731 (2001) ADSCrossRefGoogle Scholar
  34. 34.
    C. Brackmann, J. Nygren, X. Bai, Z. Li, H. Bladh, B. Axelsson, I. Denbratt, L. Koopmans, P.-E. Bengtsson, M. Alden, Spectrochim. Acta Part A 59, 3347 (2003) ADSCrossRefGoogle Scholar
  35. 35.
    N. Jiang, W.R. Lempert, G.L. Switzer, T.R. Meyer, J.R. Gord, Appl. Opt. 47, 64 (2008) ADSCrossRefGoogle Scholar
  36. 36.
    C. Brackmann, Z. Li, M. Rupinski, N. Docquier, G. Pengloan, M. Alden, Appl. Spectrosc. 59, 763 (2005) ADSCrossRefGoogle Scholar
  37. 37.
    V. Weber, J. Brubach, R.L. Gordon, A. Dreizler, Appl. Phys. B 103, 421 (2011) ADSCrossRefGoogle Scholar
  38. 38.
    V. Santoro, A. Linan, A. Gomez, Proc. Combust. Inst. 28, 2039 (2000) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • K. N. Gabet
    • 1
  • R. A. Patton
    • 1
  • N. Jiang
    • 1
  • W. R. Lempert
    • 1
  • J. A. Sutton
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringOhio State UniversityColumbusUSA

Personalised recommendations