Applied Physics B

, Volume 108, Issue 2, pp 377–392 | Cite as

Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering

  • R. A. Patton
  • K. N. Gabet
  • N. Jiang
  • W. R. Lempert
  • J. A. Sutton
Article

Abstract

In this manuscript, we describe the development of two-dimensional, high-repetition-rate (10-kHz) Rayleigh scattering imaging as applied to turbulent combustion environments. In particular, we report what we believe to be the first sets of high-speed planar Rayleigh scattering images in turbulent non-premixed flames, yielding temporally correlated image sequences of the instantaneous temperature field. Sample results are presented for the well-characterized DLR flames A and B (CH4/H2/N2) at Reynolds numbers of 15,200 and 22,800 at various axial positions downstream of the jet exit. The measurements are facilitated by the use of a user-calibrated, intensified, high-resolution CMOS camera in conjunction with a unique high-energy, high-repetition-rate pulse-burst laser system (PBLS) at Ohio State University, which yields output energies up to 200 mJ/pulse at 532 nm with 100-μs laser pulse spacing. The spatial and temporal resolution of the imaging system and acquired images are compared to the finest spatial and temporal scales expected within the turbulent flames. One of the most important features of the PBLS is the ability to readily change the pulse-to-pulse spacing as the required temporal resolution necessitates it. The quality and accuracy of the high-speed temperature imaging results are assessed by comparing derived statistics (mean and standard deviation) to that of previously reported point-based reference data acquired at Sandia National Laboratories and available within the TNF workshop. Good agreement between the two data sets is obtained providing an initial indication of quantitative nature of the planar, kHz-rate temperature imaging results.

Notes

Acknowledgements

The support of Air Force Office of Scientific Research grant FA9550-09-1-0272 (Julian Tishkoff—Technical Monitor) is greatly appreciated. The authors acknowledge previous financial support for the development of the pulse-burst laser system from NASA (Paul Danehy—Technical Monitor), the U.S. Air Force Research Laboratory—Propulsion Directorate (James Gord—Technical Monitor), and the Air Force Office of Scientific Research (J. Schmisseur—Technical Monitor).

References

  1. 1.
    N. Peters, Prog. Energy Combust. Sci. 10, 319 (1984) CrossRefGoogle Scholar
  2. 2.
    N. Peters, Proc. Combust. Inst. 21, 1231 (1986) ADSGoogle Scholar
  3. 3.
    R.W. Bilger, Prog. Energy Combust. Sci. 1, 87 (1976) CrossRefGoogle Scholar
  4. 4.
    D. Everest, J.F. Driscoll, W.J.A. Dahm, D. Feikema, Combust. Flame 101, 58 (1995) CrossRefGoogle Scholar
  5. 5.
    G.H. Wang, N.T. Clemens, P.L. Varghese, Proc. Combust. Inst. 30, 691 (2005) CrossRefGoogle Scholar
  6. 6.
    N.M. Laurendeau, Prog. Energy Combust. Sci. 14, 147 (1988) CrossRefGoogle Scholar
  7. 7.
    A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd edn. (Gordon and Breach, New York, 1996) Google Scholar
  8. 8.
    K. Kohse-Hoinghaus, J.B. Jeffries (eds.), Applied Combustion Diagnostics (Taylor and Francis, London, 2002) Google Scholar
  9. 9.
    F.-Q. Zhao, H. Hiroyasu, Prog. Energy Combust. Sci. 19, 447 (1993) CrossRefGoogle Scholar
  10. 10.
    D.A. Long, Raman Spectroscopy (McGraw Hill, New York, 1977) Google Scholar
  11. 11.
    K. Kohse-Hoinghaus, Prog. Energy Combust. Sci. 20, 203 (1994) CrossRefGoogle Scholar
  12. 12.
    J.W. Daily, Prog. Energy Combust. Sci. 23, 133 (1997) CrossRefGoogle Scholar
  13. 13.
    D.A. Greenhalgh, in Advances in Non-linear Spectroscopy, vol. 15, ed. by R.J.H. Clark, R.E. Hester (Wiley, New York, 1988), pp. 193–251 Google Scholar
  14. 14.
    M. Aldén, A. Omrane, M. Richter, G. Sarner, Prog. Energy Combust. Sci. 37, 422 (2011) CrossRefGoogle Scholar
  15. 15.
    R. Cattolica, Appl. Opt. 20, 1156 (1981) ADSCrossRefGoogle Scholar
  16. 16.
    R.P. Lucht, N.M. Laurendeau, D.W. Sweeney, Appl. Opt. 21, 3729 (1982) ADSCrossRefGoogle Scholar
  17. 17.
    M.P. Lee, B.K. McMillin, R.K. Hanson, Appl. Opt. 32, 5379 (1993) ADSCrossRefGoogle Scholar
  18. 18.
    J.M. Seitzman, R.K. Hanson, P.A. Debarber, C.F. Hess, Appl. Opt. 33, 4000 (1994) ADSCrossRefGoogle Scholar
  19. 19.
    D. Stepkowski, Prog. Energy Combust. Sci. 18, 463 (1992) ADSCrossRefGoogle Scholar
  20. 20.
    R.W. Pitz, R.J. Cattolica, F. Robben, L. Talbot, Combust. Flame 27, 313 (1976) CrossRefGoogle Scholar
  21. 21.
    J.R. Smith, Rayleigh temperature profiles in a hydrogen diffusion flame. Sandia Report, SAND78-8726 (1978) Google Scholar
  22. 22.
    R.W. Dibble, R.E. Hollenbach, Proc. Combust. Inst. 18, 1489 (1981) Google Scholar
  23. 23.
    M.B. Long, P.S. Levin, D.C. Fourgette, Opt. Lett. 10, 267 (1985) ADSCrossRefGoogle Scholar
  24. 24.
    D.C. Fourgette, R.M. Zurni, M.B. Long, Combust. Sci. Technol. 44, 307 (1986) CrossRefGoogle Scholar
  25. 25.
    B.S. Thurow, N. Jiang, M. Samimy, W.R. Lempert, Appl. Opt. 43, 5064 (2005) ADSCrossRefGoogle Scholar
  26. 26.
    J.D. Miller, M. Slipchenko, T.R. Meyer, N. Jiang, W.R. Lempert, J.R. Gord, Opt. Lett. 34, 1309 (2009) ADSCrossRefGoogle Scholar
  27. 27.
    N. Jiang, M. Webster, W.R. Lempert, Appl. Opt. 48, B23 (2009) ADSCrossRefGoogle Scholar
  28. 28.
    K.N. Gabet, N. Jiang, W.R. Lempert, J.A. Sutton, Appl. Phys. B 101, 1 (2010) ADSCrossRefGoogle Scholar
  29. 29.
    N. Jiang, R.A. Patton, W.R. Lempert, J.A. Sutton, Proc. Combust. Inst. 33, 767 (2011) CrossRefGoogle Scholar
  30. 30.
    R.A. Patton, K.N. Gabet, N. Jiang, W.R. Lempert, J.A. Sutton, Appl. Phys. B (2011). doi: 10.1007/s00340-011-4658-1 Google Scholar
  31. 31.
    A. Upatnieks, K. Laberteaux, S.L. Ceccio, Exp. Fluids 32, 87 (2002) CrossRefGoogle Scholar
  32. 32.
    C.M. Fajardo, V. Sick, Proc. Combust. Inst. 31, 3023 (2007) CrossRefGoogle Scholar
  33. 33.
    A.M. Steinberg, J.F. Driscoll, S.L. Ceccio, Exp. Fluids 44, 985 (2008) CrossRefGoogle Scholar
  34. 34.
    B. Böhm, C. Heeger, W. Meier, A. Dreizler, Proc. Combust. Inst. 32, 1647 (2009) CrossRefGoogle Scholar
  35. 35.
    A.M. Steinberg, J.F. Driscoll, S.L. Ceccio, Exp. Fluids 47, 527 (2009) CrossRefGoogle Scholar
  36. 36.
    M. Stöhr, I. Boxx, C.D. Carter, W. Meier, Proc. Combust. Inst. 33, 2953 (2011) CrossRefGoogle Scholar
  37. 37.
    A.M. Steinberg, I. Boxx, C.M. Arndt, J.H. Frank, W. Meier, Proc. Combust. Inst. 33, 1663 (2011) CrossRefGoogle Scholar
  38. 38.
    C. Kittler, A. Dreizler, Appl. Phys. B 89, 163 (2007) ADSCrossRefGoogle Scholar
  39. 39.
    I. Boxx, C. Heeger, R. Gordon, B. Böhm, A. Dreizler, W. Meier, Combust. Flame 156, 269 (2009) CrossRefGoogle Scholar
  40. 40.
    I. Boxx, M. Stöhr, C.D. Carter, W. Meier, Appl. Phys. B 95, 23 (2009) ADSCrossRefGoogle Scholar
  41. 41.
    M. Stöhr, I. Boxx, C.D. Carter, W. Meier, Proc. Combust. Inst. 33, 2953 (2011) CrossRefGoogle Scholar
  42. 42.
    W. Paa, W. Müller, M. Stafast, W. Triebel, Appl. Phys. B 86, 1 (2007) ADSCrossRefGoogle Scholar
  43. 43.
    M.E. Cundy, V. Sick, Appl. Phys. B 96, 241 (2009) ADSCrossRefGoogle Scholar
  44. 44.
    J.D. Smith, V. Sick, Appl. Phys. B 81, 579 (2005) ADSCrossRefGoogle Scholar
  45. 45.
    C.M. Fajardo, J.D. Smith, V. Sick, Appl. Phys. B 85, 25 (2006) ADSCrossRefGoogle Scholar
  46. 46.
    M. Cundy, T. Schucht, O. Thiele, V. Sick, Appl. Opt. 48, B94 (2009) ADSCrossRefGoogle Scholar
  47. 47.
    R.L. Gordon, C. Heeger, A. Dreizler, Appl. Phys. B 96, 745 (2009) ADSCrossRefGoogle Scholar
  48. 48.
    M. Juddoo, A.R. Masri, Combust. Flame 158, 902 (2011) CrossRefGoogle Scholar
  49. 49.
    B. Böhm, C. Heeger, R.L. Gordon, A. Dreizler, Flow Turbul. Combust. 86, 313 (2011) MATHCrossRefGoogle Scholar
  50. 50.
    M. Köhler, I. Boxx, K.P. Geigle, W. Meier, Appl. Phys. B 103, 271 (2011) ADSCrossRefGoogle Scholar
  51. 51.
    C.F. Kaminski, J. Hult, M. Aldén, Appl. Phys. B 68, 757 (1999) ADSCrossRefGoogle Scholar
  52. 52.
    C.F. Kaminski, J. Hult, M. Aldén, S. Lindenmaier, A. Dreizler, U. Maas, M. Baum, Proc. Combust. Inst. 28, 399 (2000) CrossRefGoogle Scholar
  53. 53.
    A. Dreizler, S. Lindenmaier, U. Maas, J. Hult, M. Aldén, C.F. Kaminski, Appl. Phys. B 70, 287 (2000) ADSCrossRefGoogle Scholar
  54. 54.
    C.F. Kaminski, X.S. Bai, J. Hult, A. Dreizler, S. Lindenmaier, L. Fuchs, Appl. Phys. B 71, 711 (2000) ADSCrossRefGoogle Scholar
  55. 55.
    J. Hult, M. Richter, J. Nygren, M. Aldén, A. Hultqvist, M. Christensen, B. Johansson, Appl. Opt. 41, 5002 (2002) ADSCrossRefGoogle Scholar
  56. 56.
    J. Hult, U. Meier, W. Meier, A. Harvey, C.F. Kaminski, Proc. Combust. Inst. 30, 701 (2005) CrossRefGoogle Scholar
  57. 57.
    S. Gashi, J. Hult, K.W. Jenkins, N. Chakraborty, S. Cant, C.F. Kaminski, Proc. Combust. Inst. 30, 809 (2005) CrossRefGoogle Scholar
  58. 58.
    J. Olofsson, M. Richter, M. Aldén, M. Auge, Rev. Sci. Instrum. 77, 013104 (2006) ADSCrossRefGoogle Scholar
  59. 59.
    J. Sjoholm, E. Kristensson, M. Richter, M. Aldén, G. Goritz, K. Knebel, Meas. Sci. Technol. 20, 025306 (2009) ADSCrossRefGoogle Scholar
  60. 60.
    P. Wu, W.R. Lempert, R.B. Miles, AIAA J. 38, 672 (2000) ADSCrossRefGoogle Scholar
  61. 61.
    B.S. Thurow, A. Satija, K. Lynch, Appl. Opt. 48, 2086 (2009) ADSCrossRefGoogle Scholar
  62. 62.
    G.-H. Wang, N.T. Clemens, P.L. Varghese, Appl. Opt. 44, 6741 (2005) ADSCrossRefGoogle Scholar
  63. 63.
    G.-H. Wang, N.T. Clemens, P.L. Varghese, Proc. Combust. Inst. 30, 691 (2005) CrossRefGoogle Scholar
  64. 64.
    G.-H. Wang, N.T. Clemens, P.L. Varghese, R.S. Barlow, Combust. Flame 152, 317 (2008) CrossRefGoogle Scholar
  65. 65.
    V. Bergmann, W. Meier, D. Wolff, W. Stricker, Appl. Phys. B 66, 489 (1998) ADSCrossRefGoogle Scholar
  66. 66.
    T.R. Meyer, G.B. King, M. Gluesenkamp, J.R. Gord, Opt. Lett. 32 (2007) Google Scholar
  67. 67.
    B. Bork, B. Böhm, C. Heeger, S.R. Chakravarthy, A. Dreizler, Appl. Phys. B 101, 487 (2010) ADSCrossRefGoogle Scholar
  68. 68.
    W. Meier, R.S. Barlow, Y.L. Chen, J.Y Chen, Combust. Flame 123, 326 (2000) CrossRefGoogle Scholar
  69. 69.
    N. Jiang, M. Webster, W.R. Lempert, J.D. Miller, T.R. Meyer, C.B. Ivey, P.M. Danehy, Appl. Opt. 50, A20 (2011) ADSCrossRefGoogle Scholar
  70. 70.
    R.S. Barlow, International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames, http://www.ca.sandia.gov/TNF/abstract.html
  71. 71.
    S.E. Bohndiek, A. Blue, A.T. Clar, M.L. Prydderch, R. Turchetta, G.J. Royle, R.D. Speller, IEEE Sens. J. 8, 1734 (2008) CrossRefGoogle Scholar
  72. 72.
    R. Hain, C.J. Kahler, C. Tropea, Exp. Fluids 42, 403 (2007) CrossRefGoogle Scholar
  73. 73.
    V. Weber, J. Brübach, R.L. Gordon, A. Dreizler, Appl. Phys. B 103, 421 (2011) ADSCrossRefGoogle Scholar
  74. 74.
    G.K. Batchelor, J. Fluid Mech. 5, 113 (1959) MathSciNetADSMATHCrossRefGoogle Scholar
  75. 75.
    G. Taylor, Proc. R. Soc. Lond. 151, 421 (1935) ADSMATHCrossRefGoogle Scholar
  76. 76.
    R.A. Antonia, B.R. Satyaprakash, F. Hussain, Phys. Fluids 23, 695 (1980) ADSCrossRefGoogle Scholar
  77. 77.
    K.A. Buch, W.J.A. Dahm, J. Fluid Mech. 317, 21 (1996) ADSCrossRefGoogle Scholar
  78. 78.
    K.A. Buch, W.J.A. Dahm, J. Fluid Mech. 364, 1 (1998) ADSMATHCrossRefGoogle Scholar
  79. 79.
    L.K. Su, N.T. Clemens, Exp. Fluids 27, 507 (1999) CrossRefGoogle Scholar
  80. 80.
    L.K. Su, N.T. Clemens, J. Fluid Mech. 488, 1 (2003) ADSMATHCrossRefGoogle Scholar
  81. 81.
    J. Mi, G.J. Nathan, Exp. Fluids 34, 687 (2003) CrossRefGoogle Scholar
  82. 82.
    J.H. Frank, S.A. Kaiser, Exp. Fluids 44, 221 (2008) CrossRefGoogle Scholar
  83. 83.
    J.H. Frank, S.A. Kaiser, Exp. Fluids 48, 823 (2010) CrossRefGoogle Scholar
  84. 84.
    S.A. Kaiser, J.H. Frank, Meas. Sci. Technol. 22, 045403 (2011) ADSCrossRefGoogle Scholar
  85. 85.
    J.H. Frank, S.A. Kaiser, J.C. Oefelein, Proc. Combust. Inst. 33, 1373 (2011) CrossRefGoogle Scholar
  86. 86.
    S.B. Pope, Turbulent Flows (Cambridge University Press, New York, 2000) MATHCrossRefGoogle Scholar
  87. 87.
    C.H. Schneider, A. Dreizler, J. Janicka, Combust. Flame 135, 185 (2000) CrossRefGoogle Scholar
  88. 88.
    N.T. Clemens, Flow Imaging, in Encyclopedia of Imaging Science and Technology (Wiley and Sons, New York, 2002) Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • R. A. Patton
    • 1
  • K. N. Gabet
    • 1
  • N. Jiang
    • 1
  • W. R. Lempert
    • 1
  • J. A. Sutton
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations