Applied Physics B

, Volume 107, Issue 4, pp 1105–1115 | Cite as

Dynamics of laser-cooled Ca+ ions in a Penning trap with a rotating wall

  • S. Bharadia
  • M. Vogel
  • D. M. Segal
  • R. C. Thompson


We have performed systematic measurements of the dynamics of laser-cooled 40Ca+ ions confined in a Penning trap and driven by a rotating dipole field (‘rotating wall’). The trap used is a copy of the one used in the SPECTRAP experiment located at the HITRAP facility at GSI, Germany. The size and shape of the ion cloud has been monitored using a CCD camera to image the fluorescence light resulting from excitation by the cooling laser. We have varied the experimental conditions such as amplitude and frequency of the rotating wall drive as well as the trapping parameters. The rotating wall can be used for a radial compression of the ion cloud thus increasing the ion density in the trap. We have also observed plasma mode excitations in agreement with theoretical expectations. This work will allow us to define the optimum parameters for high compression of the ions as needed for precision spectroscopy of forbidden transitions.


Amplify Spontaneous Emission Trapping Potential Laser Cool Magnetic Field Axis Drive Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by the Bundesministerium für Bildung und Forschung (BMBF) (contract: 06DA9020I), by the Deutsche Forschungsgemeinschaft (DFG) (contract: BI647/4-1) and the EPSRC under Grant number EP/D068509/1. We also acknowledge partial support of this work from the European Commission STREP PICC.


  1. 1.
    W.M. Itano, J.J. Bollinger, J.N. Tan, B. Jelenkovic, X.-P. Huang, D.J. Wineland, Science 279, 686 (1998) ADSCrossRefGoogle Scholar
  2. 2.
    M. Vogel, D.F.A. Winters, D.M. Segal, R.C. Thompson, Rev. Sci. Instrum. 76, 103102 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    J. Kluge, T. Beier, K. Blaum, L. Dahl, S. Eliseev, F. Herfurth, B. Hofmann, O. Kester, S. Koszudowski, C. Kozhuharov, G. Maero, W. Nörtershäuser, J. Pfister, W. Quint, U. Ratzinger, A. Schempp, R. Schuch, T. Stöhlker, R.C. Thompson, M. Vogel, G. Vorobjev, D.F.A. Winters, G. Werth, Adv. Quantum Chem. 53, 83 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    G. Gabrielse, L. Haarsma, S.L. Rolston, Int. J. Mass Spectrom. Ion Process. 88, 319 (1989) CrossRefGoogle Scholar
  5. 5.
    R.C. Thompson, S. Donnellan, D.R. Crick, D.M. Segal, J. Phys. B 42, 154003 (2009) ADSGoogle Scholar
  6. 6.
    F.G. Major, V.N. Gheorghe, G. Werth, Charged Particle Traps (Springer, Berlin, 2004) Google Scholar
  7. 7.
    L. Guo-Zhong, S. Guan, A.G. Marshall, J. Am. Soc. Mass Spectrom. 9, 473 (1998) CrossRefGoogle Scholar
  8. 8.
    C.F. Driscoll, J.H. Malmberg, K.S. Fine, Phys. Rev. Lett. 60, 1290 (1988) ADSCrossRefGoogle Scholar
  9. 9.
    L.R. Brewer, J.D. Prestage, J.J. Bollinger, W.M. Itano, D.J. Larson, D.J. Wineland, Phys. Rev. A 38, 859 (1988) ADSCrossRefGoogle Scholar
  10. 10.
    S.A. Prasad, T.M. ONeil, Phys. Fluids 22, 278 (1979) ADSCrossRefGoogle Scholar
  11. 11.
    D.J. Wineland, J.J. Bollinger, W.M. Itano, J.D. Prestage, J. Opt. Soc. Am. 2, 1721 (1985) ADSGoogle Scholar
  12. 12.
    J.J. Bollinger, D.J. Heinzen, F.L. Moore, W.M. Itano, D.J. Wineland, D.H.E. Dubin, Phys. Rev. A 48, 525 (1993) ADSCrossRefGoogle Scholar
  13. 13.
    H.F. Powell, S.R. de Echaniz, E.S. Phillips, D.M. Segal, R.C. Thompson, J. Phys. B 36, 1 (2003) Google Scholar
  14. 14.
    R.J. Hendricks, E.S. Phillips, D.M. Segal, R.C. Thompson, J. Phys. B 41, 035301 (2008) ADSGoogle Scholar
  15. 15.
    J.J. Bollinger, J.N. Tan, W.M. Itano, D.J. Wineland, Phys. Scr. T 59, 352 (1995) ADSCrossRefGoogle Scholar
  16. 16.
    L. Gruber, J.P. Holder, J. Steiger, B.R. Beck, H.E. DeWitt, J. Glassman, J.W. McDonald, D.A. Church, D. Schneider, Phys. Rev. Lett. 86, 636 (2001) ADSCrossRefGoogle Scholar
  17. 17.
    D.H.E. Dubin, T.M. O’Neil, Rev. Mod. Phys. 71, 87 (1999) ADSCrossRefGoogle Scholar
  18. 18.
    T.M. O’Neil, D.H.E. Dubin, Phys. Plasmas 5, 2163 (1998) ADSCrossRefGoogle Scholar
  19. 19.
    X.P. Huang, F. Anderegg, E.M. Hollmann, C.F. Driscoll, T.M. O’Neil, Phys. Rev. Lett. 78, 875 (1997) ADSCrossRefGoogle Scholar
  20. 20.
    X.P. Huang, J.J. Bollinger, T.B. Mitchell, W.M. Itano, Phys. Rev. Lett. 80, 73 (1998) ADSCrossRefGoogle Scholar
  21. 21.
    X.P. Huang, J.J. Bollinger, T.B. Mitchell, W.M. Itano, D.H.E. Dubin, Phys. Plasmas 5, 1656 (1998) ADSCrossRefGoogle Scholar
  22. 22.
    F. Anderegg, E.M. Hollmann, C.F. Driscoll, Phys. Rev. Lett. 81, 4875 (1998) ADSCrossRefGoogle Scholar
  23. 23.
    E.M. Hollmann, F. Anderegg, C.F. Driscoll, Phys. Plasmas 7, 2776 (2000) ADSCrossRefGoogle Scholar
  24. 24.
    D.J. Heinzen, J.J. Bollinger, F.L. Moore, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 66, 2080 (1991) ADSCrossRefGoogle Scholar
  25. 25.
    M.D. Tinkle, R.G. Greaves, C.M. Surko, Phys. Plasmas 3, 749 (1996) ADSCrossRefGoogle Scholar
  26. 26.
    D.H.E. Dubin, J.P. Schiffer, Phys. Rev. E 53, 5249 (1996) ADSGoogle Scholar
  27. 27.
    D.H.E. Dubin, Phys. Rev. Lett. 66, 2076 (1991) ADSCrossRefGoogle Scholar
  28. 28.
    J. Yu, M. Desaintfuscien, F. Plumelle, Appl. Phys. B 48, 51 (1989) ADSCrossRefGoogle Scholar
  29. 29.
    W.M. Itano, D.J. Wineland, Phys. Rev. A 25, 35 (1982) ADSCrossRefGoogle Scholar
  30. 30.
    Y. Ralchenko, A.E. Kramida, J. Reader, NIST ASD Team (2010).
  31. 31.
    D.R. Crick, S. Donnellan, R.C. Thompson, D.M. Segal, Phys. Rev. A 81, 052503 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • S. Bharadia
    • 1
  • M. Vogel
    • 2
    • 3
  • D. M. Segal
    • 1
  • R. C. Thompson
    • 1
  1. 1.Imperial College LondonLondonUK
  2. 2.Institut für Angewandte PhysikTechnische Universität DarmstadtDarmstadtGermany
  3. 3.Helmholtz-Zentrum für Schwerionenforschung GSIDarmstadtGermany

Personalised recommendations