Applied Physics B

, Volume 107, Issue 1, pp 125–130 | Cite as

Spectral phase shift and residual angular dispersion of an acousto-optic programmable dispersive filter

  • K. OsvayEmail author
  • M. Mero
  • Á. Börzsönyi
  • A. P. Kovács
  • M. P. Kalashnikov


Spectral phase shift and both types of wavelength dependent angular deviation introduced by an acousto-optic programmable dispersive filter (AOPDF) into a femtosecond laser beam at 800 nm have been measured with high precision. With the use of spectrally and spatially resolved interferometry, we have proved experimentally that the AOPDF controls the group delay dispersion (GDD) and third-order dispersion (TOD) with an accuracy of better than 1% and 3% of the preset values within the range of 10–1000 fs2 and 1000–40,000 fs3, respectively. The values of angular deviation and angular dispersion are primarily dependent on the set absolute value of GDD of the AOPDF when it is operating in continuous mode. Besides of a small offset value, there is no added angular dispersion at 0 fs2, while it can increase up to 0.2 μrad/nm at 10,000 fs2.


Acoustic Wave Angular Deviation Acoustic Power Phase Front Spectral Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Hungarian Scientific Research Found (OTKA) under Grant No. OTKA K75149. Support from the Access to Research Infrastructures activity of EU FP6 (contract RII3-CT-2003-506350, Laserlab Europe) for conducting the research is also acknowledged gratefully.


  1. 1.
    A.M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000) ADSCrossRefGoogle Scholar
  2. 2.
    J.C. Vaughan, T. Feurer, K.W. Stone, K.A. Nelson, Opt. Express 14, 1314 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    C. Dorrer, F. Salin, F. Verluise, J.P. Huignard, Opt. Lett. 23, 709 (1998) ADSCrossRefGoogle Scholar
  4. 4.
    F.M. Reinert, M. Nick, W. Lüthy, T. Feurer, Opt. Express 15, 4372 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    K. Osvay, K. Varju, G. Kurdi, Appl. Phys. B 89, 565 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    F. Druon, G. Cheriaux, J. Faure, J. Nees, M. Nantel, A. Maksimchuk, G. Mourou, J.C. Chanteloup, G. Vdovin, Opt. Lett. 23, 1043 (1998) ADSCrossRefGoogle Scholar
  7. 7.
    E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murname, G. Mourou, H. Kapteyn, G. Vdovin, Opt. Lett. 24, 493 (1999) ADSCrossRefGoogle Scholar
  8. 8.
    F. Verluise, V. Laude, Z. Cheng, C. Spielmann, P. Tournois, Opt. Lett. 25, 575 (2000) ADSCrossRefGoogle Scholar
  9. 9.
    P. Maak, G. Kurdi, A. Barócsi, K. Osvay, A.P. Kovács, L. Jakab, P. Richter, Appl. Phys. B 82, 283 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    P. Tournois, Device for Controlling Light Pulses by a Programmable Acoustooptic Device. US Patent 6072813 (2000) Google Scholar
  11. 11.
    D. Kaplan, P. Tournois, J. Phys., IV France 12, Pr-5-69 (2002) CrossRefGoogle Scholar
  12. 12.
    N. Krebs, R.A. Probst, E. Riedle, Opt. Express 18, 6164 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    S. Weber, M. Barthélemy, B. Chatel, Appl. Phys. B 98, 323 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, G. Steinmeyer, Nat. Photonics 4, 462 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    L. Canova, X. Chen, A. Trisorio, A. Jullien, A. Assion, G. Tempea, N. Forget, T. Oksenhendler, R. Lopez-Martens, Opt. Lett. 34, 1333 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    S.L. Cousin, N. Forget, A. Grün, P.K. Bates, D.R. Austin, J. Biegert, Opt. Lett. 36, 2803 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    T. Oksenhendler, P. Rosseau, R. Herzog, O. Gobert, M. Pendrix, P. Meynadier, in CLEO 2003, Baltimore, MD, USA (2003), paper CWE1 Google Scholar
  18. 18.
    D.J. McCabe, D.R. Austin, A. Tajalli, S. Weber, I.A. Walmsley, B. Chatel, J. Opt. Soc. Am. B 28, 58 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    A. Börzsönyi, M. Mero, A.P. Kovács, M.P. Kalashnikov, K. Osvay, in AIP Conference Series, Light at Extreme Intensities 2009, vol. 1228, ed. by D. Dumitras (Brasov, 2010), pp. 138–143 Google Scholar
  20. 20.
    K. Varjú, A.P. Kovács, K. Osvay, G. Kurdi, Opt. Lett. 27, 2034 (2002) ADSCrossRefGoogle Scholar
  21. 21.
    F.A. Jenkins, H.A. White, Fundamentals of Optics, 4th edn. (McGraw-Hill, New York, 1976) Google Scholar
  22. 22.
    M. Born, E. Wolf, Principles of Optics, 6th edn. (Pergamon, Oxford, 1980) Google Scholar
  23. 23.
    J.C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd edn. (Springer, Berlin, 2005) Google Scholar
  24. 24.
  25. 25.
    A. Börzsönyi, A.P. Kovács, M. Görbe, K. Osvay, Opt. Commun. 281, 3051 (2008) CrossRefGoogle Scholar
  26. 26.
  27. 27.
    K. Osvay, A.P. Kovács, Z. Heiner, G. Kurdi, J. Klebniczki, M. Csatári, IEEE J. Sel. Top. Quantum Electron. 10, 213 (2004) CrossRefGoogle Scholar
  28. 28.
    J. Pretzler, A. Kasper, K.J. Witte, Appl. Phys. B 70, 1 (2000) ADSCrossRefGoogle Scholar
  29. 29.
    K. Varjú, A.P. Kovács, G. Kurdi, K. Osvay, Appl. Phys. B 74, S259 (2002) ADSCrossRefGoogle Scholar
  30. 30.
    M.P. Kalashnikov, K. Osvay, H. Schönnagel, R. Volkov, W. Sandner, in CLEO 2011, Baltimore, MD, USA (2011), paper CWG3 Google Scholar
  31. 31.
    M.P. Kalashnikov, K. Osvay, I.M. Lachko, H. Schönnagel, W. Sandner, Appl. Phys. B 81, 1059 (2005) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • K. Osvay
    • 1
    Email author
  • M. Mero
    • 2
  • Á. Börzsönyi
    • 1
  • A. P. Kovács
    • 1
  • M. P. Kalashnikov
    • 3
  1. 1.Dept. of Optics and Quantum ElectronicsUniversity of SzegedSzegedHungary
  2. 2.Research Group on Laser PhysicsUniversity of SzegedSzegedHungary
  3. 3.Max Born InstituteBerlinGermany

Personalised recommendations