Applied Physics B

, Volume 107, Issue 1, pp 137–143 | Cite as

Ultrafast heat transfer on nanoscale in thin gold films

  • K. V. Poletkin
  • G. G. GurzadyanEmail author
  • J. Shang
  • V. KulishEmail author


Heat transfer processes, induced by ultrashort laser pulses in thin gold films, were studied with a time resolution of 50 fs. It is demonstrated that in thin gold films heat is transmitted by means of electron–phonon and phonon–phonon interactions, and dissipated on nanoscale within 800 fs. Measurements show that the electron–phonon relaxation time varies versus the probe wavelength from 1.6 to 0.8 ps for λ=560–630 nm. The applied mathematical model is a result of transforming the two-temperature model to the hyperbolic heat equation, based on assumptions that the electron gas is heated up instantaneously and applying Cattaneo’s law to the phonon subsystem, agrees well with the experimental results. This model allows us to define time of electron–phonon scattering as the ratio of the heat penetration depth to the speed of sound in the bulk material that, in turn, provides an explanation of experimental results that show the dependence of the electron–phonon relaxation time on the wavelength.


Surface Heat Flux Heat Transfer Process Ultrashort Laser Pulse Metallic Film Thin Gold Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are thankful to Prof. M.E. Michel-Beyerle for continuous support. This work is supported by the Singapore Agency for Science, Technology and Research (A*STAR), under research grant SERC GRANT No. 092 156 0123.


  1. 1.
    D. Cahill, W. Ford, K. Goodson, G. Mahan, A. Majumdar, H. Maris, R. Merlin, S. Phillpot, J. Appl. Phys. 93, 793 (2003) ADSCrossRefGoogle Scholar
  2. 2.
    A. Dietzel, R. Berger, P. Mächtle, M. Despont, W. Häberle, R. Stutz, G. Binnig, P. Vettiger, Sens. Actuators A, Phys. 100, 123 (2002) CrossRefGoogle Scholar
  3. 3.
    Y. Sun, D. Fangb, M. Sakaa, A.K. Soh, Int. J. Solids Struct. 45, 1993 (2008) CrossRefzbMATHGoogle Scholar
  4. 4.
    S. Anisimov, B. Kapeliovich, T. Perel’man, Sov. Phys. JETP 39, 375 (1974) ADSGoogle Scholar
  5. 5.
    N. Singh, Int. J. Mod. Phys. B 24, 1141 (2010) ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    D.Y. Tzou, Macro to Microscale Heat Transfer: The Lagging Behavior (Taylor & Francis, New York, 1997) Google Scholar
  7. 7.
    G. Eesley, Phys. Rev. B 33, 2144 (1986) ADSCrossRefGoogle Scholar
  8. 8.
    W. Fann, R. Storz, H. Tom, J. Bokor, Phys. Rev. B 46, 13592 (1992) ADSCrossRefGoogle Scholar
  9. 9.
    W. Fann, R. Storz, H. Tom, J. Bokor, Phys. Rev. Lett. 68, 2834 (1992) ADSCrossRefGoogle Scholar
  10. 10.
    C. Sun, F. Vallee, L. Acioli, E. Ippen, J. Fujimoto, Phys. Rev. B 48, 12365 (1993) ADSCrossRefGoogle Scholar
  11. 11.
    T.Q. Qiu, T. Juhasz, C. Suarez, W.E. Bron, C.L. Tien, Int. J. Heat Mass Transf. 37, 2799 (1994) CrossRefGoogle Scholar
  12. 12.
    R. Groeneveld, R. Sprik, A. Lagendijk, Phys. Rev. B 51, 11433 (1995) ADSCrossRefGoogle Scholar
  13. 13.
    Z. Lin, L. Zhigilei, V. Celli, Phys. Rev. B 77, 75133 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    H. Sim, S. Park, T. Kim, Y. Choi, J. Lee, S. Lee, Mater. Trans. 51, 1156 (2010) CrossRefGoogle Scholar
  15. 15.
    T.Q. Qiu, C.L. Tien, Int. J. Heat Mass Transf. 37, 2789 (1994) CrossRefGoogle Scholar
  16. 16.
    J.J. Klossika, U. Gratzke, M. Vicanek, G. Simon, Phys. Rev. B 54, 10277 (1996) ADSCrossRefGoogle Scholar
  17. 17.
    J. Chen, J. Beraun, Numer. Heat Transf., Part A, Appl. 40, 1 (2001) ADSzbMATHGoogle Scholar
  18. 18.
    H. Inouye, K. Tanaka, I. Tanahashi, K. Hirao, Phys. Rev. B 57, 11334 (1998) ADSCrossRefGoogle Scholar
  19. 19.
    H. Hirori, T. Tachizaki, O. Matsuda, O. Wright, Phys. Rev. B 68, 113102 (2003) ADSCrossRefGoogle Scholar
  20. 20.
    D.W. Tang, N. Araki, J. Phys. D, Appl. Phys. 29, 2527 (1996) ADSCrossRefGoogle Scholar
  21. 21.
    S. Link, C. Burda, M. Mohamed, B. Nikoobakht, M. El-Sayed, Phys. Rev. B 61, 6086 (2000) ADSCrossRefGoogle Scholar
  22. 22.
    J. Shang, Z. Luo, C. Cong, J. Lin, T. Yu, G. Gurzadyan, Appl. Phys. Lett. 97, 163103 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    R. Rosei, D. Lynch, Phys. Rev. B 5, 3883 (1972) ADSCrossRefGoogle Scholar
  24. 24.
    V.V. Kulish, L.J. Lage, J. Heat Transf. 122, 372 (2000) CrossRefGoogle Scholar
  25. 25.
    J.I. Frankel, J. Thermophys. Heat Transf. 20, 945 (2006) CrossRefGoogle Scholar
  26. 26.
    V.V. Kulish, L.J. Lage, L.P. Komarov, P.E. Raad, J. Heat Transf. 123, 1133 (2001) CrossRefGoogle Scholar
  27. 27.
    D. Joseph, L. Preziosi, Rev. Mod. Phys. 61, 41 (1989) MathSciNetADSCrossRefzbMATHGoogle Scholar
  28. 28.
    M. Abramowitz, I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (US Government Printing Office, Washington, 2010) Google Scholar
  29. 29.
    V.V. Kulish, B.V. Novozhilov, Math. Probl. Eng. 4, 173 (2003) CrossRefGoogle Scholar
  30. 30.
    J. Hohlfeld, D. Grosenick, U. Conrad, E. Matthias, Appl. Phys. A Mater. 60, 137 (1995). 129th WE-Heraeus-Seminar on Surface Studies by Nonlinear Laser Spectroscopies, Kassel, Germany, 30 May–1 June, 1994 ADSCrossRefGoogle Scholar
  31. 31.
    J. Hohlfeld, J. Muller, S. Wellershoff, E. Matthias, Appl. Phys. B, Lasers Opt. 64, 387 (1997) ADSCrossRefGoogle Scholar
  32. 32.
    W. Rohsenow, J. Hartnett, E. Ganic, Handbook of Heat Transfer Fundamentals (McGraw-Hill, New York, 1985) Google Scholar
  33. 33.
    G. Kaye, T. Laby, Tables of Physical and Chemical Constants and Some Mathematical Functions (Harlow, Longman, 1995) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Division of Thermal and Fluids Engineering, School of Mechanical & Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Division of Physics and Applied Physics, School of Physical & Mathematical SciencesNanyang Technological UniversitySingaporeSingapore

Personalised recommendations