Applied Physics B

, Volume 106, Issue 3, pp 769–774 | Cite as

In situ optical measurements of bacterial endospore breakdown in a shock tube

  • A. D. McCartt
  • S. Gates
  • P. Lappas
  • J. B. Jeffries
  • R. K. Hanson
Article

Abstract

The interaction of endospore-laden bioaerosols and shock waves is monitored with a combination of laser absorption and scattering. Tests are performed in the Stanford aerosol shock tube for post-shock temperatures ranging from 400–1100 K. In situ laser measurements at 266 and 665 nm provide a real-time monitor of endospore morphology. Scatter of visible light measures the integrity of endospore structure, while absorption of UV light provides a monitor of biochemicals released by endospore rupture. For post-shock temperatures greater than 750 K endospore morphological breakdown is observed. A simple theoretical model is employed to quantify the optical measurements, and mechanisms leading to the observed data are discussed.

References

  1. 1.
    P. Setlow, Microbiology 101, 514 (2006) Google Scholar
  2. 2.
    W.L. Nicholson, N. Munakata, G. Horneck, H.J. Melosh, P. Setlow, Microbiol. Mol. Biol. Rev. 64, 548 (2000) CrossRefGoogle Scholar
  3. 3.
    H. Lundbeck, O. Sköldberg, Biotechnol. Bioeng. 5, 167 (1963) CrossRefGoogle Scholar
  4. 4.
    P.R. Sislian, J. Rau, X. Zhang, D. Pham, M. Li, L. Mädler, P.D. Christofides, Chem. Eng. Sci. 65, 4803 (2010) CrossRefGoogle Scholar
  5. 5.
    S.D. Gates, A. McCartt, P. Lappas, J.B. Jeffries, R.K. Hanson, L.A. Hokama, K.E. Mortelmans, Microbiology 109, 1591 (2010) Google Scholar
  6. 6.
    A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 96, 161 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    R.K. Hanson, Proc. Combust. Inst. 33, 1 (2011) CrossRefGoogle Scholar
  8. 8.
    D.F. Davidson, D.R. Haylett, R.K. Hanson, Combust. Flame 155, 108 (2008) CrossRefGoogle Scholar
  9. 9.
    S.H. Pendukar, P.R. Kulkarni, Food/Nahrung 32, 1003 (1988) CrossRefGoogle Scholar
  10. 10.
    C.G. Mallidis, J.S. Scholefield, J. Appl. Bacteriol. 59, 479 (1985) CrossRefGoogle Scholar
  11. 11.
    P.S. Tuminello, E.T. Arakawa, B.N. Khare, J.M. Wrobel, M.R. Querry, M.E. Milham, Appl. Opt. 36, 2818 (1997) ADSCrossRefGoogle Scholar
  12. 12.
    R. Goodacre, B. Shann, R.J. Gilbert, É.M. Timmins, A.C. McGovern, B.K. Alsberg, D.B. Kell, N.A. Logan, Anal. Chem. 72, 119 (1999) CrossRefGoogle Scholar
  13. 13.
    J.B. Young, A. Guha, J. Fluid Mech. 228, 243 (1991) ADSMATHGoogle Scholar
  14. 14.
    P.L. Privalov, N.N. Khechinashvili, J. Mol. Biol. 86, 665 (1974) CrossRefGoogle Scholar
  15. 15.
    M. Röhrig, E.L. Petersen, D.F. Davidson, R.K. Hanson, Int. J. Chem. Kinet. 29, 483 (1997) CrossRefGoogle Scholar
  16. 16.
    E.I. Shakhnovich, A.V. Finkelstein, Biopolymers 28, 1667 (1989) CrossRefGoogle Scholar
  17. 17.
    M. Weijers, P.A. Barneveld, M.A. Cohen Stuart, R.W. Visschers, Protein Sci. 12, 2693 (2003) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. D. McCartt
    • 1
  • S. Gates
    • 1
  • P. Lappas
    • 1
  • J. B. Jeffries
    • 1
  • R. K. Hanson
    • 1
  1. 1.High Temperature Gas dynamics Laboratory, Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations