Advertisement

Applied Physics B

, Volume 106, Issue 3, pp 629–633 | Cite as

Mode-hop-free tuning over 135 GHz of external cavity diode lasers without antireflection coating

  • S. DuttaEmail author
  • D. S. Elliott
  • Y. P. Chen
Article

Abstract

We report an external cavity diode laser (ECDL), using a diode whose front facet is not anti-reflection (AR) coated that has a mode-hop-free (MHF) tuning range greater than 135 GHz. We achieved this using a short external cavity and by simultaneously tuning the internal and external modes of the laser. We find that the precise location of the pivot point of the grating in our laser is less critical than commonly believed. The general applicability of the method, combined with the compact portable mechanical and electronic design, makes it well suited for both research and industrial applications.

Keywords

Tuning Range Pivot Point External Cavity Free Spectral Range External Cavity Diode Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is partially supported by the National Science Foundation (Grant number CCF0829918). S.D. acknowledges Adeel Altaf and Dionysios Antypas for helpful discussions.

References

  1. 1.
    C.E. Wieman, L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991) ADSCrossRefGoogle Scholar
  2. 2.
    E.A. Cornell, C.E. Wieman, Rev. Mod. Phys. 74, 875 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    J. Shao, L. Lathdavong, P. Thavixay, O. Axner, J. Opt. Soc. Am. B 24, 2294 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    M.W. Fleming, A. Mooradian, IEEE J. Quantum Electron. QE-17, 44 (1981) ADSCrossRefGoogle Scholar
  5. 5.
    L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T.W. Hänsch, Opt. Commun. 117, 541 (1995) ADSCrossRefGoogle Scholar
  6. 6.
    K. Liu, M.G. Littman, Opt. Lett. 6, 117 (1980) ADSCrossRefGoogle Scholar
  7. 7.
    M. de Labachelerie, G. Passedat, Appl. Opt. 32, 269 (1993); Erratum: M. de Labachelerie, H. Sasada, G. Passedat, Appl. Opt. 33, 3817 (1994) ADSCrossRefGoogle Scholar
  8. 8.
    L. Nilse, H.J. Davies, C.S. Adams, Appl. Opt. 38, 548 (1999) ADSCrossRefGoogle Scholar
  9. 9.
    T. Hof, D. Fick, H.J. Jänsch, Opt. Commun. 124, 283 (1996) ADSCrossRefGoogle Scholar
  10. 10.
    J. Hult, I.S. Burns, C.F. Kaminski, Appl. Opt. 44, 3675 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    V.P. Gerginov, Y.V. Dancheva, M.A. Taslakov, S.S. Cartaleva, Opt. Commun. 149, 162 (1998) ADSCrossRefGoogle Scholar
  12. 12.
    T. Führer, T. Walther, Opt. Lett. 33, 372 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    C. Petridis, I.D. Lindsay, D.J.M. Stothard, M. Ebrahimzadeh, Rev. Sci. Instrum. 72, 3811 (2001) ADSCrossRefGoogle Scholar
  14. 14.
    T. Führer, D. Stang, T. Walther, Opt. Express 17, 4991 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    A. Bösel, K.-D. Salewski, T. Kinder, Opt. Lett. 32, 1956 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    R.J. Lang, A. Yariv, Phys. Rev. A 34, 2038 (1986) ADSCrossRefGoogle Scholar
  17. 17.
    R.S. Longhurst, in Geometrical and Physical Optics (Longman, Harlow, 1973), pp. 261–305 Google Scholar
  18. 18.
  19. 19.
    S. Gerstenkorn, J. Verges, J. Chevillard, http://www.lac.u-psud.fr/Iode-11-000-14-000-cm-1
  20. 20.
    L. Hildebrandt, R. Knispel, S. Stry, J.R. Sacher, F. Schael, Appl. Opt. 42, 2110 (2003) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of PhysicsPurdue UniversityWest LafayetteUSA
  2. 2.School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations