Applied Physics B

, Volume 107, Issue 4, pp 921–934 | Cite as

On the application of radio frequency voltages to ion traps via helical resonators

  • J. D. Siverns
  • L. R. Simkins
  • S. Weidt
  • W. K. HensingerEmail author


Ions confined using a Paul trap require a stable, high voltage and low noise radio frequency (RF) potential. We present a guide for the design and construction of a helical coil resonator for a desired frequency that maximises the quality factor for a set of experimental constraints. We provide an in-depth analysis of the system formed from a shielded helical coil and an ion trap by treating the system as a lumped element model. This allows us to predict the resonant frequency and quality factor in terms of the physical parameters of the resonator and the properties of the ion trap. We also compare theoretical predictions with experimental data for different resonators, and predict the voltage applied to the ion trap as a function of the Q factor, input power and the properties of the resonant circuit.


Resonant Frequency Solder Joint Paul Trap Helical Coil Coil Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the UK Engineering and Physical Sciences Research Council (EP/E011136/1 and EP/G007276/1), the European Commission’s Sixth Framework Marie Curie International Reintegration Programme (Grant No. MIRG-CT-2007-046432), the Nuffield Foundation, and the University of Sussex.


  1. 1.
    W. Paul, Rev. Mod. Phys. 62, 531 (1990) ADSCrossRefGoogle Scholar
  2. 2.
    J.J. Bollinger, D.J. Heinzen, W.M. Itano, S.L. Gilbert, D.J. Wineland, IEEE Trans. Instrum. Meas. 40, 126 (1991) CrossRefGoogle Scholar
  3. 3.
    P.T. H Fisk, M.J. Sellars, M.A. Lawn, G. Coles, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 344 (1997) CrossRefGoogle Scholar
  4. 4.
    D. Kielpinski, C. Monroe, D.J. Wineland, Nature 417, 709 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    J.I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995) ADSCrossRefGoogle Scholar
  6. 6.
    H. Häffner, C.F. Roos, R. Blatt, Phys. Rep. 469, 155 (2008) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    R.J. Clark, T. Lin, K.R. Brown, I.L. Chuang, J. Appl. Phys. 105, 013114 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    P.A. Ivanov, S.S. Ivanov, N.V. Vitanov, A. Mering, M. Fleischhauer, K. Singer, Phys. Rev. A 80, 060301 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    D. Porras, J.I. Cirac, Phys. Rev. Lett. 92, 207901 (2004) ADSCrossRefGoogle Scholar
  10. 10.
    H. Schmitz, A. Friedenauer, C. Schneider, R. Matjeschk, M. Enderlein, T. Huber, J. Glueckert, D. Porras, T. Schaetz, Appl. Phys. B, Lasers Opt. 95, 195 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    M. Yu, V. Dokas, in Proceedings of 34th European Microwave Conference, vol. 2 (2004), pp. 989–992 Google Scholar
  12. 12.
    J.C. Collingwood, J.W. White, J. Sci. Instrum. 44, 509 (1967) ADSCrossRefGoogle Scholar
  13. 13.
    W. Meyer, IEEE Trans. Microw. Theory Tech. 29, 240 (1981) ADSCrossRefGoogle Scholar
  14. 14.
    W.W. Macalpine, R.O. Schildknecht, Proc. IRE 47, 2099 (1959) CrossRefGoogle Scholar
  15. 15.
    P.K. Ghosh, Ion Traps (Oxford University Press, Oxford, 1996) Google Scholar
  16. 16.
    M.J. Madsen, W.K. Hensinger, D. Stick, J.A. Rabchuk, C. Monroe, Appl. Phys. B, Lasers Opt. 78, 639 (2004) ADSCrossRefGoogle Scholar
  17. 17.
    D. Hucul, M. Yeo, W.K. Hensinger, J. Rabchuk, S. Olmschenk, C. Monroe, Quantum Inf. Comput. 8, 501 (2008) MathSciNetzbMATHGoogle Scholar
  18. 18.
    Q.A. Turchette, D. Kielpinski, B.E. King, D. Leibfried, D.M. Meekhof, C.J. Myatt, M.A. Rowe, C.A. Sackett, C.S. Wood, W.M. Itano, C. Monroe, D.J. Wineland, Phys. Rev. A 61, 063418 (2000) ADSCrossRefGoogle Scholar
  19. 19.
    R.G. Medhurst, Wir. Eng., February and March 35, 80 (1947) Google Scholar
  20. 20.
    A.I. Zverev, H.J. Blinchikoff, IEEE Trans. Component Parts 8, 99 (1961) CrossRefGoogle Scholar
  21. 21.
    M.D. Hughes, B. Lekitsch, J.A. Broersma, W.K. Hensinger, Contemp. Phys. 52, 505 (2011) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • J. D. Siverns
    • 1
  • L. R. Simkins
    • 1
  • S. Weidt
    • 1
  • W. K. Hensinger
    • 1
    Email author
  1. 1.Department of Physics and AstronomyUniversity of SussexBrightonUK

Personalised recommendations