Applied Physics B

, Volume 106, Issue 4, pp 857–862 | Cite as

Polarization sensitive sub-wavelength metallic structures: toward near-field light confinement control

Article

Abstract

In this paper, we seek to demonstrate spatial near field light confinement with a truly sub-wavelength resolution in the visible range. For that purpose, an opaque metallic screen is pierced with an array of rectangular nano-apertures which support polarization sensitive guided modes. We show that it is possible to switch on and off sub-wavelength apertures about only 200 nanometers away. Theoretical results have been performed (3D-FDTD home-made code) and are in good agreement with the experimental results. These kinds of nano-structures might offer a convenient and versatile way to sub-wavelength light addressing, optical trapping, molecular, or nano-probing, non-linear spectroscopy.

Keywords

TE01 Mode Cutoff Wavelength Rectangular Aperture Light Confinement Experimental Transmission Spectrum 

Notes

Acknowledgements

This work is partially supported by the Government of Senegal which supply A. Ndao’s research grant and by the U.F.R. Sciences and Techniques of the University of Franche-Comté which earmark funds. The authors would like to thank Roland Salut from the platform of technology, MIMENTO at FEMTO-ST, for greatly helping with the fabrication process.

References

  1. 1.
    C.C. Neacsu, S. Berweger, R.L. Olmon, L.V. Saraf, C. Ropers, M.B. Raschke, Nano Lett. 10, 592 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    E.J. Sánchez, L. Novotny, X.S. Xie, Phys. Rev. Lett. 82, 4014 (1999) ADSCrossRefGoogle Scholar
  3. 3.
    F.I. Baida, Y. Poujet, B. Guizal, D. Van Labeke, Opt. Commun. 256, 190 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    P. Ghenuche, S. Cherukulappurath, T.H. Taminiau, N.F. Van Hulst, Phys. Rev. Lett. 101, 116805 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    G. Volpe, S. Cherukulappurath, R.J. Parramon, G. Molina-Terriza, Nano Lett. 9, 3608 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    H. Caglayan, I. Bulu, M. Loncar, E. Ozbay, Opt. Lett. 34, 88 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis, Phys. Rev. Lett. 91, 207401 (2003) ADSCrossRefGoogle Scholar
  8. 8.
    Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, Science 315, 1686 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000) ADSCrossRefGoogle Scholar
  10. 10.
    M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F.J. Garcia de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb, Nature 446, 301 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    S. Choi, D. Park, C. Lienau, M.S. Jeong, C.C. Byeon, D. Ko, D.S. Kim, Opt. Express 16, 12075 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    G. Lévêque, O.J.F. Martin, Phys. Rev. Lett. 100, 117402 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    X. Li, M.I. Stockman, Phys. Rev. B 77, 195109 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    M.I. Stockman, D.J. Bergman, T. Kobayashi, Phys. Rev. B 69, 54202 (2004) ADSCrossRefGoogle Scholar
  15. 15.
    M.I. Stockman, S.V. Faleev, D.J. Bergmanl, Physica B 338, 361 (2003) ADSCrossRefGoogle Scholar
  16. 16.
    M. Sukharev, T. Seideman, Nano Lett. 6, 715 (2006) ADSCrossRefGoogle Scholar
  17. 17.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003) ADSCrossRefGoogle Scholar
  18. 18.
    J.C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T.W. Ebbesen, T.C. Weeber, Phys. Rev. B 70, 235406 (2004) ADSCrossRefGoogle Scholar
  19. 19.
    F.I. Baida, Opt. Express 18, 812 (2010) CrossRefGoogle Scholar
  20. 20.
    R. Gordon, A.G. Brolo, Opt. Express 13, 1933 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    F.I. Baida, D. Van Labeke, G. Granet, A. Moreau, A. Belkhir, Appl. Phys. B 79, 1 (2004) ADSCrossRefGoogle Scholar
  22. 22.
    F.I. Baida, D. Van Labeke, Opt. Commun. 209, 17 (2002) ADSCrossRefGoogle Scholar
  23. 23.
    M.H. Chowdhury, J.M. Catchmark, J.R. Lakowicza, Appl. Phys. Lett. 91, 103118 (2007) ADSCrossRefGoogle Scholar
  24. 24.
    D. Egorov, B.S. Dennis, G. Blumberg, M.I. Hafte, Phys. Rev. B 70, 033404 (2004) ADSCrossRefGoogle Scholar
  25. 25.
    H. Gao, J. Henzie, T.W. Odom, Nano Lett. 6, 2104 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    S.C. Hohng, Y.C. Yoon, D.S. Kima, V. Malyarchukl, Appl. Phys. Lett. 81, 3239 (2002) ADSCrossRefGoogle Scholar
  27. 27.
    D.S. Kim, S.C. Hohng, V. Malyarchuk, Y.C. Yoon, Phys. Rev. Lett. 91, 143901 (2003) ADSCrossRefGoogle Scholar
  28. 28.
    E.S. Kwak, J. Henzie, S.H. Chang, S.K. Gray, G.C. Schatz, T.W. Odom, Nano Lett. 5, 1963 (2005) ADSCrossRefGoogle Scholar
  29. 29.
    M. Mrejen, A. Israel, H. Taha, M. Palchan, A. Lewis, Opt. Express 415, 9129 (2007) ADSCrossRefGoogle Scholar
  30. 30.
    Y. Poujet, M. Roussey, J. Salvi, F.I. Baida, D. Van Labeke, A. Perentes, C. Santschi, P. Hoffmann, Photonics Nanostruct. Fundam. Appl. 4, 47 (2006) ADSCrossRefGoogle Scholar
  31. 31.
    J. Greffet, R. Carminati, Prog. Surf. Sci. 56, 133 (1997) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Département d’Optique P.M. Duffieux, Institut FEMTO-ST UMR 6174 CNRSUniversité de Franche–ComtéBesançon CedexFrance

Personalised recommendations