Advertisement

Applied Physics B

, Volume 107, Issue 1, pp 17–22 | Cite as

Tunable, low-repetition-rate, cost-efficient femtosecond Ti:sapphire laser for nonlinear microscopy

  • P. G. Antal
  • R. Szipőcs
Article

Abstract

We report on a broadly tunable, long-cavity Ti:sapphire laser oscillator being mode-locked in the net negative intracavity dispersion regime by Kerr-lens mode-locking, delivering τ FWHM<300 fs pulses at 22 MHz repetition rate. The wavelength of the laser can be tuned over a 170 nm wide range between 712 nm and 882 nm. Having a typical pump power of 2.6 W, the maximum pulse peak power is 60 kW. Comparison of the reported laser with a standard, 76 MHz Ti:sapphire oscillator regarding two-photon excitation efficiency in a laser scanning microscope shows that the 22 MHz laser generates the same fluorescence signal at considerably, 1.82 times lower average power, which is expected to result in a reduced photothermal damage probability of biological samples. This fact along with the broad tunability and a low pump power requirement makes this cost-effective laser an ideal light source for nonlinear microscopy.

Keywords

Pump Power Output Coupler Excitation Power Fluorescence Lifetime Imaging Microscopy Input Coupler 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We gratefully acknowledge the fruitful discussions with Attila Kolonics on biological issues related to nonlinear microscopy. We also thank Attila Szigligeti and Dóra Haluszka for their technical assistance. This research was supported by the Hungarian Development Agency (NFÜ) under contract no. TECH-09-A2-2009-0134 and by R&D Ultrafast Lasers Ltd. under contract no. BAROSS-KM07-KM-TERM-07-2008-0003.

Supplementary material

340_2011_4830_MOESM1_ESM.zip (1.8 mb)
Supplementary material, approximately 1.83 MB.
340_2011_4830_MOESM2_ESM.zip (2.8 mb)
Supplementary material, approximately 2.77 MB.

References

  1. 1.
    K. König, T.W. Becker, P. Fischer, I. Riemann, K.-J. Halbhuber, Opt. Lett. 24, 113 (1999) ADSCrossRefGoogle Scholar
  2. 2.
    H.G. Breunig, H. Studier, K. König, Opt. Express 18, 7857 (2010) CrossRefGoogle Scholar
  3. 3.
    K. König, Proc. SPIE 7883, 78830D (2011) CrossRefGoogle Scholar
  4. 4.
    B.R. Masters, P.T.C. So, C. Buehler, N. Barry, J.D. Sutin, W.W. Mantulin, E. Gratton, J. Biomed. Opt. 9, 1265 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    S.H. Cho, B.E. Bouma, E.P. Ippen, J.G. Fujimoto, Opt. Lett. 24, 417 (1999) ADSCrossRefGoogle Scholar
  6. 6.
    E.R. Tkaczyk, J.Y. Ye, S. Katnik, K. Luker, G. Luker, J.R. Baker, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies. OSA Technical Digest Series (CD) (Optical Society of America, Washington, 2007), paper CTuP7 Google Scholar
  7. 7.
    E.R. Tkaczyk, C.F. Zhong, J.Y. Ye, S. Katnik, A. Myc, T. Thomas, K.E. Luker, G.D. Luker, J.R. Baker, in Novel Optical Instrumentation for Biomedical Applications III, ed. by C. Depeursinge. Proceedings of SPIE-OSA Biomedical Optics, vol. 6631 (Optical Society of America, Washington, 2007), paper 6631_31 CrossRefGoogle Scholar
  8. 8.
    R. Carriles, K.E. Sheetz, E.E. Hoover, J.A. Squier, V. Barzda, Opt. Express 16, 10364 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    K.E. Sheetz, E.E. Hoover, R. Carriles, D. Kleinfeld, J.A. Squier, Opt. Express 16, 17574 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    D. Sandkuijl, R. Cisek, A. Major, V. Barzda, Biomed. Opt. Express 1, 895 (2010) CrossRefGoogle Scholar
  11. 11.
    S. Lévêque-Fort, D.N. Papadopoulos, S. Forget, F. Balembois, P. Georges, Opt. Lett. 30, 168 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    A. Major, V. Barzda, P.A.E. Piunno, S. Musikhin, U.J. Krull, Opt. Express 14, 5285 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    P. Blandin, F. Druon, M. Hanna, S. Lévêque-Fort, C. Lesvigne, V. Couderc, P. Leproux, A. Tonello, P. Georges, Opt. Express 16, 18844 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    J.D. Kafka, M.L. Watts, J.-W.J. Pieterse, IEEE J. Quantum Electron. 28, 2151 (1992) ADSCrossRefGoogle Scholar
  15. 15.
    E.J. Mayer, J. Möbius, A. Euteneuer, W.W. Rühle, R. Szipőcs, Opt. Lett. 22, 528 (1997) ADSCrossRefGoogle Scholar
  16. 16.
    B. Császár, A. Kőházi-Kis, R. Szipőcs, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Baltimore, Maryland, USA, 2005. Technical Digest (CD) (Optical Society of America, Washington, 2005), paper JWB15 Google Scholar
  17. 17.
    D. Herriott, H. Kogelnik, R. Kompfner, Appl. Opt. 3, 523 (1964) ADSCrossRefGoogle Scholar
  18. 18.
    F. Krausz, M.E. Fermann, T. Brabec, P.F. Curley, M. Hofer, M.H. Ober, C. Spielmann, E. Wintner, A.J. Schmidt, IEEE J. Quantum Electron. 28, 2097 (1992) ADSCrossRefGoogle Scholar
  19. 19.
    M. Müller, J. Squier, G.J. Brakenhoff, Opt. Lett. 20, 1038 (1995) ADSCrossRefGoogle Scholar
  20. 20.
    F. Fischer, B. Volkmer, S. Puschmann, R. Greinert, W. Breitbart, J. Kiefer, R. Wepf, Proc. SPIE 6191, 619105 (2006) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Research Institute for Solid State Physics and OpticsBudapestHungary

Personalised recommendations