Advertisement

Applied Physics B

, Volume 106, Issue 4, pp 999–1008 | Cite as

Software-switching between direct absorption and wavelength modulation spectroscopy for the investigation of ADC resolution requirements

  • B. LinsEmail author
  • R. Engelbrecht
  • B. Schmauss
Article

Abstract

We present a tunable diode laser spectrometer that can be software-switched between a wavelength modulation spectroscopy (WMS) operation mode and the direct absorption spectroscopy (DAS) technique on a per-scan basis. The new setup allows a direct comparison between the two techniques under equal hardware and system environment conditions. In this work, we compare the impact of analog-to-digital converter resolution for operation in WMS and DAS mode. Example concentration evaluations show that in the DAS approach, relative absorptions smaller than the least significant bit can be measured with scan averaging and FIR-filtering applied. With full resolution, both techniques show similar performance in our setup, with a slight advantage for the WMS implementation.

Keywords

Tunable Diode Laser Absorption Spectroscopy Wavelength Modulation Spectroscopy Direct Absorption Spectroscopy Resolution Reduction Residual Amplitude Modulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors gratefully acknowledge funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German Research Foundation (DFG) in the framework of the German excellence initiative.

References

  1. 1.
    M.G. Allen, Meas. Sci. Technol. 9, 545 (1998) ADSCrossRefGoogle Scholar
  2. 2.
    P.A. Martin, Chem. Soc. Rev. 31, 201 (2002) CrossRefGoogle Scholar
  3. 3.
    H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2034 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    P. Ortwein, W. Woiwode, S. Wagner, M. Gisi, V. Ebert, Appl. Phys. B 100, 341 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    K. Duffin, A. McGettrick, W. Johnstone, G. Stewart, D.G. Moodie, J. Lightwave Technol. 25, 3114 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    T. Fernholz, H. Teichert, V. Ebert, Appl. Phys. B 75, 229 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    M. Andersson, L. Persson, T. Svensson, S. Svanberg, Rev. Sci. Instrum. 78, 113107 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    B. Lins, P. Zinn, R. Engelbrecht, B. Schmauss, Appl. Phys. B 100, 367 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    T. Svensson, M. Lewander, S. Svanberg, Opt. Express 18, 16460 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Opt. 48, 6740 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    K. Mohan, M.A. Khan, A.N. Dharamsi, Appl. Phys. B 102, 569 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    P. Kluczynski, A.M. Lindberg, O. Axner, Appl. Opt. 40, 770 (2001) ADSCrossRefGoogle Scholar
  13. 13.
    A. Hangauer, J. Chen, M.C. Amann, Wavelength modulation spectroscopy with multi-harmonic detection, in Field Laser Applications in Industry and Research (FLAIR), Murnau (2011) Google Scholar
  14. 14.
    P. Kluczynski, J. Gustafsson, A.M. Lindberg, O. Axner, Spectrochim. Acta A 56, 1277 (2001) CrossRefGoogle Scholar
  15. 15.
    K.R. Beebe, R.J. Pell, M.B. Seasholtz, Chemometrics: A Practical Guide (Wiley, New York, 1998) Google Scholar
  16. 16.
    K. Wunderle, S. Wagner, I. Pasti, R. Pieruschka, U. Rascher, U. Schurr, V. Ebert, Appl. Opt. 48, B172 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    B. Lins, F. Pflaum, R. Engelbrecht, B. Schmauss, Appl. Phys. B 102, 293 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    J. Chen, A. Hangauer, R. Strzoda, M.C. Amann, Appl. Phys. B 100, 331 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    J.A.C. Weideman, SIAM J. Numer. Anal. 31, 1497 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    L.S. Rothman et al., J. Quant. Spectrosc. Radiat. Transf. 110, 533 (2009) ADSCrossRefGoogle Scholar
  21. 21.
    P. Werle, R. Mücke, F. Semr, Appl. Phys. B 57, 131 (1993) ADSCrossRefGoogle Scholar
  22. 22.
    P. Werle, Appl. Phys. B 102, 313 (2011) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Erlangen Graduate School in Advanced Optical Technologies (SAOT)Universität Erlangen-NürnbergErlangenGermany
  2. 2.Lehrstuhl für Hochfrequenztechnik (LHFT)Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations