Applied Physics B

, Volume 107, Issue 4, pp 997–1005 | Cite as

The trap design of PENTATRAP

  • C. Roux
  • C. Böhm
  • A. Dörr
  • S. Eliseev
  • S. George
  • M. Goncharov
  • Y. N. Novikov
  • J. Repp
  • S. Sturm
  • S. Ulmer
  • K. Blaum


A novel Penning-trap tower consisting of five compensated cylindrical Penning traps is developed for the PENTATRAP mass spectrometer at the Max-Planck-Institut für Kernphysik in Heidelberg, Germany. An analytical expression for the electrostatic potential inside the trap tower is derived to calculate standard Penning-trap properties like the compensation of anharmonicities and an orthogonal geometry of the trap electrodes. Since the PENTATRAP project described in the preceding article aims for ultra high-precision mass-ratio measurements of highly charged ions up to uranium, systematic effects for highly charged ions inside the trap tower are considered for the design process as well. Finally, a limit due to remaining anharmonic shifts at large amplitudes is estimated for the resulting geometry, which is important for phase-sensitive measurements of the reduced cyclotron frequency of the ions.


Cyclotron Frequency Trap Electrode Trapping Voltage Tuning Ratio Trap Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the Max-Planck Society and by the Deutsche Forschungsgemeinschaft under contract BL 981/2-1. Yu. N. and Ch. B. acknowledge the support from the Extreme Matter Institute (EMMI). S.U. acknowledges support from the IMPRS-QD. C.R. thanks M. Kretzschmar and U. Warring for fruitful discussions and support.


  1. 1.
    K. Blaum, Yu. Novikov, G. Werth, Contemp. Phys. 51, 149 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    K. Blaum, Phys. Rep. 425, 1 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    I. Bergström, M. Björkhage, K. Blaum, H. Bluhme, T. Fritioff, Sz. Nagy, R. Schuch, Eur. Phys. J. D 22, 41 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    Sz. Nagy, T. Fritioff, M. Suhonen, R. Schuch, K. Blaum, M. Björkhage, I. Bergström, Phys. Rev. Lett. 96, 163004 (2006) ADSCrossRefGoogle Scholar
  5. 5.
    M. Smith, M. Brodeur, T. Brunner, S. Ettenauer, A. Lapierre, R. Ringle, V.L. Ryjkov, F. Ames, P. Bricault, G.W.F. Drake, P. Delheij, D. Lunney, F. Sarazin, J. Dilling, Phys. Rev. Lett. 101, 202501 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    M. Block, D. Ackermann, K. Blaum, C. Droese, M. Dworschak, S. Eliseev, T. Fleckenstein, E. Haettner, F. Herfurth, F.P. Heßberger, S. Hofmann, J. Ketelaer, J. Ketter, H.-J. Kluge, G. Marx, M. Mazzocco, Yu. Novikov, W.R. Plaß, A. Popeko, S. Rahaman, D. Rodriguez, C. Scheidenberger, L. Schweikhard, P.G. Thirolf, G.K. Vorobyev, C. Weber, Nature 463, 785 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    S. Rainville, J.K. Thompson, E.G. Myers, J.M. Brown, M.S. Dewey, E.G. Kessler, R.D. Deslattes, H.G. Börner, M. Jentschel, P. Mutti, D.E. Pritchard, Nature 438, 1096 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    R.S. Van Dyck, S.L. Zafonte, S. Van Liew, D.B. Pinegar, P.B. Schwinberg, Phys. Rev. Lett. 92, 220802 (2004) CrossRefGoogle Scholar
  9. 9.
    L.S. Brown, G. Gabrielse, Phys. Rev. A 25, 2423 (1982) ADSCrossRefGoogle Scholar
  10. 10.
    L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986) ADSCrossRefGoogle Scholar
  11. 11.
    A. Kellerbauer, K. Blaum, G. Bollen, F. Herfurth, H.-J. Kluge, M. Kuckein, E. Sauvan, C. Scheidenberger, L. Schweikhard, Eur. Phys. J. D 22, 53 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    R.S. Van Dyck, D.B. Pinegar, S. Van Liew, S.L. Zafonte, Int. J. Mass Spectrom. 251, 231 (2006) CrossRefGoogle Scholar
  13. 13.
    S. Rainville, J.K. Thompson, D.E. Pritchard, Science 303, 334 (2004) ADSCrossRefGoogle Scholar
  14. 14.
    J. Repp, Ch. Böhm, J.R. Crespo Lopez-Urrutia, A. Dörr, S. Eliseev, S. George, M. Goncharov, Yu. Novikov, C. Roux, S. Sturm, S. Ulmer, K. Blaum, PENTATRAP: a novel cryogenic multi-penning trap experiment for high-precision mass measurements on highly charged ions. Appl. Phys. B (2011). Preceeding article in this volume Google Scholar
  15. 15.
    G. Gabrielse, F.C. MacKintosh, Int. J. Mass Spectrom. 57, 1 (1984) CrossRefGoogle Scholar
  16. 16.
    K. Blaum, H. Kracke, S. Kreim, A. Mooser, C. Mrozik, W. Quint, C.C. Rodegheri, B. Schabinger, S. Sturm, S. Ulmer, A. Wagner, J. Walz, G. Werth, J. Phys. B 42, 154021 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    S. Sturm, A. Wagner, B. Schabinger, T. Zatorshi, Z. Harman, W. Quint, C. Werth, C.H. Keitel, K. Blaum, Phys. Rev. Lett. 107, 023002 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    S. Ulmer, C.C. Rodegheri, K. Blaum, H. Kracke, A. Mooser, W. Quint, J. Walz, Phys. Rev. Lett. 106, 253001 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    D. Hanneke, S. Fogwell, G. Gabrielse, Phys. Rev. Lett. 100, 120801 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    H.-J. Kluge, T. Beier, K. Blaum, L. Dahl, S. Eliseev, F. Herfurth, B. Hofmann, O. Kester, S. Koszudowski, C. Kozhuharov, G. Maero, W. Nörtershäuser, J. Pfister, W. Quint, U. Ratzinger, A. Schempp, R. Schuch, Th. Stöhlker, R.C. Thompson, M. Vogel, G. Vorobjev, D.F.A. Winters, G. Werth, Adv. Quantum Chem. 53, 83 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    G. Gabrielse, X. Fei, K. Helmerson, S.L. Rolston, R. Tjoelker, T.A. Trainor, H. Kalinowsky, J. Haas, W. Kells, Phys. Rev. Lett. 57, 2504 (1986) ADSCrossRefGoogle Scholar
  22. 22.
    G. Gabrielse, N.S. Bowden, P. Oxley, A. Speck, C.H. Storry, J.N. Tan, M. Wessels, D. Grzonka, W. Oelert, G. Schepers, T. Sefzick, J. Walz, H. Pittner, T.W. Hänsch, E.A. Hessels, Phys. Rev. Lett. 89, 213401 (2002) ADSCrossRefGoogle Scholar
  23. 23.
    M. Amoretti, C. Amsler, G. Bonomi, A. Bouchta, P. Bowe, C. Carraro, C.L. Cesar, M. Charlton, M.J.T. Collier, M. Doser, V. Filippini, K.S. Fine, A. Fontana, M.C. Fujiwara, R. Funakoshi, P. Genova, J.S. Hangst, R.S. Hayano, M.H. Holzscheiter, L.V. Jorgensen, V. Lagomarsino, R. Landua, D. Lindelöf, E. Lodi Rizzini, M. Macri, N. Madsen, G. Manuzio, M. Marchesotti, P. Montagna, H. Pruys, C. Regenfus, P. Riedler, J. Rochet, A. Rotondi, G. Rouleau, G. Testera, A. Variola, T.L. Watson, D.P. van der Werf, Nature 419, 456 (2002) ADSCrossRefGoogle Scholar
  24. 24.
    R.S. Van Dyck, D.J. Wineland, P.A. Ekstrom, H.G. Dehmelt, Appl. Phys. Lett. 28, 446 (1976) ADSCrossRefGoogle Scholar
  25. 25.
    J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975), p. 108 zbMATHGoogle Scholar
  26. 26.
    G. Gabrielse, L. Haarsma, S.L. Rolston, Int. J. Mass Spectrom. 88, 319 (1989) CrossRefGoogle Scholar
  27. 27.
    J. Verdu, S. Kreim, K. Blaum, H. Kracke, W. Quint, S. Ulmer, J. Walz, New J. Phys. 10, 103009 (2008) ADSCrossRefGoogle Scholar
  28. 28.
    G. Gabrielse, Phys. Rev. A 27, 2277 (1983) ADSCrossRefGoogle Scholar
  29. 29.
    J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975), p. 134 zbMATHGoogle Scholar
  30. 30.
    R.S. Van Dyck, F.L. Moore, D.L. Farnham, P.B. Schwinberg, Phys. Rev. A 40, 6308 (1989) ADSCrossRefGoogle Scholar
  31. 31.
    J.V. Porto, Phys. Rev. A 64, 023403 (2001) MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    H. Häffner, Ph.D. Thesis, Universität Mainz, 2000 Google Scholar
  33. 33.
    D.J. Wineland, H.G. Dehmelt, J. Appl. Phys. 46, 919 (1975) ADSCrossRefGoogle Scholar
  34. 34.
    J. Verdu, S. Djekic, S. Stahl, T. Valenzuela, M. Vogel, G. Werth, H.-J. Kluge, W. Quint, Phys. Scr. T112, 68 (2004) ADSCrossRefGoogle Scholar
  35. 35.
    E.A. Cornell, R.M. Weisskoff, K.R. Boyce, D.E. Pritchard, Phys. Rev. A 41, 312 (1990) ADSCrossRefGoogle Scholar
  36. 36.
    S. Sturm, B. Schabinger, A. Wagner, K. Blaum, Phys. Rev. Lett. (2011). doi: 10.1103/PhysRevLett.107.143003 Google Scholar
  37. 37.
    S. Stahl, J. Alonso, S. Djekic, H.-J. Kluge, W. Quint, J. Verdu, M. Vogel, G. Werth, J. Phys. B 38, 297 (2005) ADSCrossRefGoogle Scholar
  38. 38.
    S. Stahl, Ph.D. Thesis, Universität Mainz, 1998 Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • C. Roux
    • 1
    • 2
  • C. Böhm
    • 1
    • 2
    • 3
  • A. Dörr
    • 1
    • 2
  • S. Eliseev
    • 1
  • S. George
    • 1
    • 6
  • M. Goncharov
    • 1
    • 2
  • Y. N. Novikov
    • 3
    • 4
  • J. Repp
    • 1
    • 2
  • S. Sturm
    • 1
    • 5
  • S. Ulmer
    • 1
    • 7
    • 2
    • 5
  • K. Blaum
    • 1
    • 2
  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany
  2. 2.Fakultät für Physik und AstronomieRuprecht-Karls-UniversitätHeidelbergGermany
  3. 3.Extreme Matter Institute EMMIHelmholtz GemeinschaftDarmstadtGermany
  4. 4.St. Petersburg Nuclear Physics InstituteGatchinaRussia
  5. 5.Institut für PhysikJohannes Gutenberg-UniversitätMainzGermany
  6. 6.National Superconducting Cyclotron Laboratory, MSUEast LansingUSA
  7. 7.RIKEN Advanced Science InstituteWakoJapan

Personalised recommendations