Advertisement

Applied Physics B

, Volume 106, Issue 3, pp 741–753 | Cite as

Determination of fluorescence and non-radiative de-excitation rates of excited 3-pentanone at low pressures

  • B. H. Cheung
  • R. K. Hanson
Article

Abstract

3-Pentanone photophysics measurements and subsequent fluorescence quantum yield (FQY) model development are presented. A heated, flowing optical cell and laser excitation at 248, 266, 277, and 308 nm were utilized, allowing investigation of FQY and absorption cross-section values for 3-pentanone vapor from 298 to 690 K and 10 to 30 mbar. Measurements of FQY were also made for 20 mbar of 3-pentanone at 1.3 bar total pressure in nitrogen from 298 to 530 K and in air from 298 to 487 K. Absolute FQY was determined by calibration to Rayleigh scattering of nitrogen gas. Based on these FQY measurements and fluorescence lifetime data from previous work, the fluorescence rate k f was determined to be 3.70×105 s−1. The current work extends knowledge of the non-radiative rate k nr to vibrational energies of 15000 cm−1, and the expression for k nr was optimized to include a fit to these new data points. Finally, variation of FQY with 3-pentanone vapor pressure was used to optimize the vibrational relaxation cascade parameter α 3p . The updated FQY model for 3-pentanone vapor shows agreement within 8% to the current FQY data across the investigated range of temperatures and pressures.

Keywords

Absorption Cross Section Vibrational Energy Fluorescence Quantum Yield Vibrational Relaxation Optical Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was funded by the Air Force Office of Scientific Research (Aerospace, Chemical, and Material Sciences Directorate), with Dr. Julian Tishkoff as the technical monitor.

References

  1. 1.
    C. Schulz, V. Sick, Prog. Energy Combust. Sci. 31, 75 (2005) CrossRefGoogle Scholar
  2. 2.
    S. Einecke, C. Schulz, V. Sick, Appl. Phys. B 71, 717 (2000) ADSCrossRefGoogle Scholar
  3. 3.
    D.A. Rothamer, J.A. Snyder, R.K. Hanson, R.R. Steeper, SAE Int. J. Fuels Lubr. 1, 520 (2009) Google Scholar
  4. 4.
    J.A. Snyder, R.K. Hanson, R.P. Fitzgerald, R.R. Steeper, SAE Int. J. Eng. 2, 460 (2009) Google Scholar
  5. 5.
    J. Koch, J. Gronki, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transf. 109, 2037 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    D.A. Hansen, E.K.C. Lee, J. Chem. Phys. 62, 183 (1975) ADSCrossRefGoogle Scholar
  7. 7.
    F. Grossman, P.B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, Appl. Phys. B 62, 249 (1996) ADSCrossRefGoogle Scholar
  8. 8.
    J.D. Koch, R.K. Hanson, Appl. Phys. B 76, 319 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    J.D. Koch, R.K. Hanson, W. Koban, C. Schulz, Appl. Opt. 43, 5901 (2004) ADSCrossRefGoogle Scholar
  10. 10.
    A. Braeuer, F. Beyrau, A. Leipertz, Appl. Opt. 45, 4982 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    V. Modica, C. Morin, P. Guibert, Appl. Phys. B 87, 193 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    Koch, J. D., Ph.D. thesis, Stanford University (2005) Google Scholar
  13. 13.
    Rothamer, D. A., Ph.D. thesis, Stanford University (2007) Google Scholar
  14. 14.
    J.T. Salmon, N.M. Laurendeau, Appl. Opt. 24, 65 (1985) ADSCrossRefGoogle Scholar
  15. 15.
    R.B. Miles, W.R. Lempert, J.N. Forkey, Meas. Sci. Technol. 12, 33 (2001) ADSCrossRefGoogle Scholar
  16. 16.
    H. Naus, W. Ubachs, Opt. Lett. 25, 347 (2000) ADSCrossRefGoogle Scholar
  17. 17.
    U. Griesmann, J.H. Burnett, Opt. Lett. 24, 1699 (1999) ADSCrossRefGoogle Scholar
  18. 18.
    R. Martinez, A. Buitrago, N. Howell, C. Hearn, J. Joens, Atmos. Environ., A Gen. Topics 26, 785 (1992) CrossRefGoogle Scholar
  19. 19.
    M. Thurber, F. Grisch, B. Kirby, M. Votsmeier, R. Hanson, Appl. Opt. 37, 4963 (1998) ADSCrossRefGoogle Scholar
  20. 20.
    J. Heicklen, W.A. Noyes, J. Am. Chem. Soc. 81, 3858 (1959) CrossRefGoogle Scholar
  21. 21.
    A. Halpern, W. Ware, J. Chem. Phys. 54, 1271 (1971) ADSCrossRefGoogle Scholar
  22. 22.
    G. Luckey, W. Noyes, J. Chem. Phys. 19, 227 (1951) ADSCrossRefGoogle Scholar
  23. 23.
    F. Ossler, M. Alden, Appl. Phys. B 64, 493 (1997) ADSCrossRefGoogle Scholar
  24. 24.
    E.K.C. Lee, R.S. Lee, Photochemistry of Simple Aldehydes and Ketones in the Gas Phase (Wiley, Hoboken, 1980) Google Scholar
  25. 25.
    S.J. Strickler, R.A. Berg, J. Chem. Phys. 37, 814 (1962) ADSCrossRefGoogle Scholar
  26. 26.
    G.D. Gillispie, E.C. Lim, Chem. Phys. Lett. 34, 513 (1975) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.High Temperature Gasdynamics Laboratory, Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations