Advertisement

Applied Physics B

, Volume 106, Issue 2, pp 491–499 | Cite as

Optical feedback cavity enhanced absorption spectroscopy: effective adjustment of the feedback-phase

  • J. C. Habig
  • J. Nadolny
  • J. Meinen
  • H. Saathoff
  • T. Leisner
Article

Abstract

Optical-feedback cavity enhanced absorption spectroscopy (OF-CEAS) is a very sensitive technique for the detection of trace amounts of gaseous absorbers. The most crucial parameter in an OF-CEAS setup is the optical phase of the light fed back into the laser source, which is usually controlled by the position of a piezo driven mirror. Various approaches for the analysis of the cavity transmitted light with respect to feedback-phase are presented, and tested on simulated phase and frequency dependent cavity transmission. Finally, we present the performance of a digital signal processor based regulator—employing one of these approaches—in a real OF-CEAS experiment. The results of the simulation show that several algorithms are well suited for the task of control signal generation. They confirm also that with the presented approach, a mode by mode correction of the feedback-phase is possible. Consequently, a regulatory bandwidth of 37 Hz was achieved. This maximum control frequency was limited by the piezo system.

Keywords

Diode Laser Digital Signal Processor Mode Width Optical Feedback Cavity Transmission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.S. Brown, Chem. Rev. 103, 5219 (2003) CrossRefGoogle Scholar
  2. 2.
    S.M. Ball, R.L. Jones, Chem. Rev. 103, 5239 (2003) CrossRefGoogle Scholar
  3. 3.
    G. Berden, R. Engelen, Cavity Ring-down Spectroscopy (Wiley, Chichester, 2009) CrossRefGoogle Scholar
  4. 4.
    J. Morville, S. Kassi, M. Chenevier, D. Romanini, Appl. Phys. B, Lasers Opt. 80, 1027 (2005). doi: 10.1007/s00340-005-1828-z ADSCrossRefGoogle Scholar
  5. 5.
    E. Kerstel, R. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, D. Romanini, Appl. Phys. B, Lasers Opt. 85, 397 (2006). doi: 10.1007/s00340-006-2356-1 ADSCrossRefGoogle Scholar
  6. 6.
    J. Meinen, J. Thieser, U. Platt, T. Leisner, Atmos. Chem. Phys. 10, 3901 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    M. Mazurenka, A.J. Orr-Ewing, R. Peverall, G.A.D. Ritchie, Annu. Rep. Prog. Chem., Sect. C Phys. Chem. 101, 100 (2005) CrossRefGoogle Scholar
  8. 8.
    K.K. Lehmann, D. Romanini, J. Chem. Phys. 105, 10263 (1996) ADSCrossRefGoogle Scholar
  9. 9.
    J. Morville, D. Romanini, A. Kachanov, M. Chenevier, Appl. Phys. B, Lasers Opt. 78, 465 (2004). doi: 10.1007/s00340-003-1363-8 ADSCrossRefGoogle Scholar
  10. 10.
    D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, H.-J. Jost, Appl. Phys. B, Lasers Opt. 83, 659 (2006). doi: 10.1007/s00340-006-2177-2 ADSCrossRefGoogle Scholar
  11. 11.
    S.G. Baran, G. Hancock, R. Peverall, G.A.D. Ritchie, N.J. van Leeuwen, Analyst 134, 243 (2009). doi: 10.1039/b811793d ADSCrossRefGoogle Scholar
  12. 12.
    I. Courtillot, J. Morville, V. Motto-Ros, D. Romanini, Appl. Phys. B, Lasers Opt. 85, 407 (2006). doi: 10.1007/s00340-006-2354-3 ADSCrossRefGoogle Scholar
  13. 13.
    V. Motto-Ros, J. Morville, P. Rairoux, Appl. Phys. B, Lasers Opt. 87, 531 (2007). doi: 10.1007/s00340-007-2618-6 ADSCrossRefGoogle Scholar
  14. 14.
    V. Motto-Ros, M. Durand, J. Morville, Appl. Phys. B, Lasers Opt. 91, 203 (2008). doi: 10.1007/s00340-008-2950-5 ADSCrossRefGoogle Scholar
  15. 15.
    B. Dahmani, L. Hollberg, R. Drullinger, Opt. Lett. 12, 876 (1987) ADSCrossRefGoogle Scholar
  16. 16.
    G. Maisons, P.G. Carbajo, M. Carras, D. Romanini, Opt. Lett. 35, 3607 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    D. Hamilton, A. Orr-Ewing, Appl. Phys. B, Lasers Opt. 102, 879 (2011). doi: 10.1007/s00340-010-4259-4 ADSCrossRefGoogle Scholar
  18. 18.
    D. Hamilton, M. Nix, S. Baran, G. Hancock, A. Orr-Ewing, Appl. Phys. B, Lasers Opt. 100, 233 (2010). doi: 10.1007/s00340-009-3811-6 ADSCrossRefGoogle Scholar
  19. 19.
    T.J. Butler, D. Mellon, J. Kim, J. Litman, A.J. Orr-Ewing, J. Phys. Chem. A, Mol. Spectrosc. Kinet. Environ. Gen. Theory 113, 3963 (2009) Google Scholar
  20. 20.
    P. Laurent, A. Clairon, C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989) ADSCrossRefGoogle Scholar
  21. 21.
    C. Henry, IEEE J. Quantum Electron. 18, 259 (1982) ADSCrossRefGoogle Scholar
  22. 22.
    S. Ohshima, H. Schnatz, J. Appl. Phys. 71, 3114 (1992) ADSCrossRefGoogle Scholar
  23. 23.
    V. Motto-Ros, Cavités de haute finesse pour la spectroscopie d’absorption haute sensibilié et haute précision: Application à l’étude de molécules d’intérêt atmosphérique. PhD thesis, Université Claude Bernard, Lyon 1 (2005). Version 2, 31 Mar. 2006 Google Scholar
  24. 24.
    A. Savitzky, M.J.E. Golay, Anal. Chem. 36, 1627 (1964) ADSCrossRefGoogle Scholar
  25. 25.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes. Cambridge University Press, New York (2007) zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • J. C. Habig
    • 1
    • 2
  • J. Nadolny
    • 1
  • J. Meinen
    • 1
  • H. Saathoff
    • 1
  • T. Leisner
    • 1
    • 2
  1. 1.Institute for Meteorology and Climate Research—Atmospheric Aerosol ResearchKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  2. 2.Institute of Environmental PhysicsUniversity of HeidelbergHeidelbergGermany

Personalised recommendations