Applied Physics B

, Volume 106, Issue 2, pp 339–348

Optimized coherence parameters for high-resolution holographic microscopy

Article

Abstract

A holographic in-line microscope setup with a glass sample carrier commonly uses a coherent laser light source, with the disadvantage of an incomplete suppression of disturbing interferences and coherence-induced noise.

We use temporally partially coherent and spatially partially coherent illumination in the micrometer range of 5 to 100 μm generated by spectrally and spatially filtered light-emitting diodes (LEDs) and tungsten filament lamps. It is shown how errors in reconstructed holograms are decreased by a factor of more than two and the spatial resolution reaches the limit as determined by the numerical aperture. A straightforward model is developed to investigate the effects of partial coherence. The optimization of the coherence parameters improves the imaging quality up to the limit of a conventional microscope.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.W. Goodman, Speckle Phenomena in Optics (Roberts & Company, Englewood, 2007) Google Scholar
  2. 2.
    H. Meng, W.L. Anderson, F. Hussain, D.D. Liu, J. Opt. Soc. Am. A 10, 2046 (1993) ADSCrossRefGoogle Scholar
  3. 3.
    D.J. De Bitetto, Appl. Phys. Lett. 8, 78 (1966) ADSCrossRefGoogle Scholar
  4. 4.
    M. Lurie, J. Opt. Soc. Am. 56, 1369 (1966) ADSCrossRefGoogle Scholar
  5. 5.
    F. Dubois, M.L.N. Requena, C. Minetti, O. Monnom, E. Istasse, Appl. Opt. 43, 1131 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    G.I. Kosourov, I.N. Kalinkina, M.P. Golovei, Pisma ZhETF 4, 84 (1966) Google Scholar
  7. 7.
    G. Pedrini, H.J. Tiziani, Appl. Opt. 41, 4489 (2002) ADSCrossRefGoogle Scholar
  8. 8.
    F. Dubois, L. Joannes, J.-C. Legros, Appl. Opt. 38, 7085 (1999) ADSCrossRefGoogle Scholar
  9. 9.
    B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, G. von Bally, Opt. Lasers Eng. 46, 499 (2008) CrossRefGoogle Scholar
  10. 10.
    L. Repetto, E. Piona, C. Pontiggia, Opt. Lett. 29, 1132 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    U. Gopinathan, G. Pedrini, W. Osten, J. Opt. Soc. Am. A 25, 2459 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    J. Sheng, E. Malkiel, J. Katz, Appl. Opt. 45, 3893 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    I. Moon, B. Javidi, IEEE Trans. Med. Imaging 27, 1782 (2008) CrossRefGoogle Scholar
  14. 14.
    W. Bishara, T.-W. Su, A.F. Coskun, A. Ozcan, Opt. Express 18, 11181 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    P. Petruck, R. Riesenberg, R. Kowarschik, Tech. Mess. 77, 473 (2010) CrossRefGoogle Scholar
  16. 16.
    E. Hecht, Optik (Addison-Wesley, Bonn, 1992) Google Scholar
  17. 17.
    J. Popp, V.V. Tuchin, A. Chiou, S. Heinemann (eds.), Handbook of Biophotonics, Basics and Techniques, vol. 1 (Wiley-VCH, Weinheim, 2011), p. 268 Google Scholar
  18. 18.
    J. Garcia-Sucerquia, W. Xu, S.K. Jericho, P. Klages, M.H. Jericho, H.J. Kreuzer, Appl. Opt. 45, 836 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    M. Kanka, R. Riesenberg, H.J. Kreuzer, Opt. Lett. 34, 1162 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    J.W. Goodman, Introduction to Fourier Optics, 2nd edn. (McGraw-Hill, New York, 1996) Google Scholar
  21. 21.
    J. Garcia-Sucerquia, D.C. Alvarez-Palacio, H.J. Kreuzer, Appl. Opt. 47, 4723 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    T. Latychevskaia, H.-W. Fink, Phys. Rev. Lett. 98, 233901 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    G. Indebetouw, J. Opt. 17, 53 (1986) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute of Photonic Technology (IPHT)JenaGermany
  2. 2.Institute of Applied OpticsUniversity of JenaJenaGermany

Personalised recommendations