Skip to main content
Log in

A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a solid-state laser system that generates 750 mW of continuous-wave, single-frequency output at 313 nm. Sum-frequency generation with fiber lasers at 1550 and 1051 nm produces up to 2 W at 626 nm. This visible light is then converted to ultraviolet by cavity-enhanced second-harmonic generation. The laser output can be tuned over a 495-GHz range, which includes the 9Be+ laser cooling and repumping transitions. This is the first report of a narrow-linewidth laser system with sufficient power to perform fault-tolerant quantum-gate operations with trapped 9Be+ ions by use of stimulated Raman transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Blatt, D. Wineland, Nature 453, 1008 (2008)

    Article  ADS  Google Scholar 

  2. D.J. Wineland, D. Leibfried, Laser Phys. Lett. 8, 175 (2011)

    Article  ADS  Google Scholar 

  3. D.J. Wineland, Phys. Scr. T 137, 014007 (2009)

    Article  ADS  Google Scholar 

  4. D.J. Wineland, C. Monroe, W.M. Itano, D. Leibfried, B.E. King, D.M. Meekhof, J. Res. Natl. Inst. Stand. Technol. 103, 259 (1998)

    Article  Google Scholar 

  5. D. Kielpinski, C. Monroe, D.J. Wineland, Nature 417, 709 (2002)

    Article  ADS  Google Scholar 

  6. J.M. Amini, H. Uys, J.H. Wesenberg, S. Seidelin, J. Britton, J.J. Bollinger, D. Leibfried, C. Ospelkaus, A.P. VanDevender, D.J. Wineland, New J. Phys. 12, 033031 (2010)

    Article  ADS  Google Scholar 

  7. P.W. Shor, Phys. Rev. A 52, R2493 (1995)

    Article  ADS  Google Scholar 

  8. A.M. Steane, Phys. Rev. Lett. 77, 793 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. R. Ozeri, W.M. Itano, R.B. Blakestad, J. Britton, J. Chiaverini, J.D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J.H. Wesenberg, D.J. Wineland, Phys. Rev. A 75, 042329 (2007)

    Article  ADS  Google Scholar 

  10. A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, T.W. Hänsch, T. Schätz, Appl. Phys. B 84, 371 (2006)

    Article  ADS  Google Scholar 

  11. H. Schnitzler, U. Fröhlich, T.K.W. Boley, A.E.M. Clemen, J. Mlynek, A. Peters, S. Schiller, Appl. Opt. 41, 7000 (2002)

    Article  ADS  Google Scholar 

  12. S. Vasilyev, A. Nevsky, I. Ernsting, M. Hansen, J. Shen, S. Schiller, Appl. Phys. B 103, 27 (2011)

    Article  ADS  Google Scholar 

  13. D.L. Hart, L. Goldberg, W.K. Burns, Electron. Lett. 35, 52 (1999)

    Article  Google Scholar 

  14. L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, J.W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995)

    Article  ADS  Google Scholar 

  15. G.D. Boyd, D.A. Kleinman, J. Appl. Phys. 39, 3597 (1968)

    Article  ADS  Google Scholar 

  16. G.D. Miller, R.G. Batchko, W.M. Tulloch, D.R. Weise, M.M. Fejer, R.L. Byer, Opt. Lett. 22, 1834 (1997)

    Article  ADS  Google Scholar 

  17. H. Moosmüller, J.D. Vance, Opt. Lett. 22, 1135 (1997)

    Article  ADS  Google Scholar 

  18. W.R. Bosenberg, J.I. Alexander, L.E. Myers, R.W. Wallace, Opt. Lett. 23, 207 (1998)

    Article  ADS  Google Scholar 

  19. V.G. Dmitriev, G.G. Gurzadyan, D.N. Nikogosyan, in Handbook of Nonlinear Optical Crystals, 3rd edn., ed. by A.L. Schawlow, A.E. Siegman, T. Tamir (Springer, Berlin, 1999)

    Google Scholar 

  20. A. Yariv, Optical Electronics, 4th edn. (Saunders College, Philadelphia, 1991)

    Google Scholar 

  21. W. Sellmeier, Ann. Phys. Chem. 143, 272 (1871). Note that the page number for this article is often incorrectly quoted as 271

    Article  ADS  Google Scholar 

  22. D. Eimerl, L. Davis, S. Velsko, E.K. Graham, A. Zalkin, J. Appl. Phys. 62, 1968 (1987)

    Article  ADS  Google Scholar 

  23. V.D. Volosov, Sov. Phys. Tech. Phys. 14, 1652 (1970)

    ADS  Google Scholar 

  24. F.M. Librecht, J.A. Simons, IEEE J. Quantum Electron. QE-11, 850 (1975)

    Article  ADS  Google Scholar 

  25. D.J. Kuizenga, Appl. Phys. Lett. 21, 570 (1972)

    Article  ADS  Google Scholar 

  26. R. Fischer, P.V. Nickles, T.B. Chu, L.-W. Wieczorek, Ann. Phys. 39, 287 (1982)

    Article  Google Scholar 

  27. T. Freegarde, J. Coutts, J. Walz, D. Leibfried, T.W. Hänsch, J. Opt. Soc. Am. B 14, 2010 (1997)

    Article  ADS  Google Scholar 

  28. J.C. Sandberg, Research toward laser spectroscopy of trapped atomic hydrogen. PhD thesis, MIT (1993)

  29. T.W. Hänsch, B. Couillaud, Opt. Commun. 35, 441 (1980)

    Article  ADS  Google Scholar 

  30. Details are provided at http://ionizer.sourceforge.net/LaserBrothers.html

  31. C.S. Adams, A.I. Ferguson, Opt. Commun. 79, 219 (1990)

    Article  ADS  Google Scholar 

  32. E.S. Polzik, H.J. Kimble, Opt. Lett. 16, 1400 (1991)

    Article  ADS  Google Scholar 

  33. D.N. Nikogosyan, Appl. Phys. A 52, 359 (1991)

    Article  ADS  Google Scholar 

  34. K.R. Brown, C. Ospelkaus, Y. Colombe, A.C. Wilson, D. Leibfried, D.J. Wineland, Nature 471, 196 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, A.C., Ospelkaus, C., VanDevender, A.P. et al. A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions. Appl. Phys. B 105, 741–748 (2011). https://doi.org/10.1007/s00340-011-4771-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4771-1

Keywords

Navigation