Advertisement

Applied Physics B

, Volume 105, Issue 4, pp 741–748 | Cite as

A 750-mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions

  • A. C. WilsonEmail author
  • C. Ospelkaus
  • A. P. VanDevender
  • J. A. Mlynek
  • K. R. Brown
  • D. Leibfried
  • D. J. Wineland
Article

Abstract

We present a solid-state laser system that generates 750 mW of continuous-wave, single-frequency output at 313 nm. Sum-frequency generation with fiber lasers at 1550 and 1051 nm produces up to 2 W at 626 nm. This visible light is then converted to ultraviolet by cavity-enhanced second-harmonic generation. The laser output can be tuned over a 495-GHz range, which includes the 9Be+ laser cooling and repumping transitions. This is the first report of a narrow-linewidth laser system with sufficient power to perform fault-tolerant quantum-gate operations with trapped 9Be+ ions by use of stimulated Raman transitions.

Keywords

Signal Beam Raman Laser Gate Operation Periodically Pole Lithium Niobate Waist Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Blatt, D. Wineland, Nature 453, 1008 (2008) ADSCrossRefGoogle Scholar
  2. 2.
    D.J. Wineland, D. Leibfried, Laser Phys. Lett. 8, 175 (2011) ADSCrossRefGoogle Scholar
  3. 3.
    D.J. Wineland, Phys. Scr. T 137, 014007 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    D.J. Wineland, C. Monroe, W.M. Itano, D. Leibfried, B.E. King, D.M. Meekhof, J. Res. Natl. Inst. Stand. Technol. 103, 259 (1998) CrossRefGoogle Scholar
  5. 5.
    D. Kielpinski, C. Monroe, D.J. Wineland, Nature 417, 709 (2002) ADSCrossRefGoogle Scholar
  6. 6.
    J.M. Amini, H. Uys, J.H. Wesenberg, S. Seidelin, J. Britton, J.J. Bollinger, D. Leibfried, C. Ospelkaus, A.P. VanDevender, D.J. Wineland, New J. Phys. 12, 033031 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    P.W. Shor, Phys. Rev. A 52, R2493 (1995) ADSCrossRefGoogle Scholar
  8. 8.
    A.M. Steane, Phys. Rev. Lett. 77, 793 (1996) MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    R. Ozeri, W.M. Itano, R.B. Blakestad, J. Britton, J. Chiaverini, J.D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J.H. Wesenberg, D.J. Wineland, Phys. Rev. A 75, 042329 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, T.W. Hänsch, T. Schätz, Appl. Phys. B 84, 371 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    H. Schnitzler, U. Fröhlich, T.K.W. Boley, A.E.M. Clemen, J. Mlynek, A. Peters, S. Schiller, Appl. Opt. 41, 7000 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    S. Vasilyev, A. Nevsky, I. Ernsting, M. Hansen, J. Shen, S. Schiller, Appl. Phys. B 103, 27 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    D.L. Hart, L. Goldberg, W.K. Burns, Electron. Lett. 35, 52 (1999) CrossRefGoogle Scholar
  14. 14.
    L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, J.W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995) ADSCrossRefGoogle Scholar
  15. 15.
    G.D. Boyd, D.A. Kleinman, J. Appl. Phys. 39, 3597 (1968) ADSCrossRefGoogle Scholar
  16. 16.
    G.D. Miller, R.G. Batchko, W.M. Tulloch, D.R. Weise, M.M. Fejer, R.L. Byer, Opt. Lett. 22, 1834 (1997) ADSCrossRefGoogle Scholar
  17. 17.
    H. Moosmüller, J.D. Vance, Opt. Lett. 22, 1135 (1997) ADSCrossRefGoogle Scholar
  18. 18.
    W.R. Bosenberg, J.I. Alexander, L.E. Myers, R.W. Wallace, Opt. Lett. 23, 207 (1998) ADSCrossRefGoogle Scholar
  19. 19.
    V.G. Dmitriev, G.G. Gurzadyan, D.N. Nikogosyan, in Handbook of Nonlinear Optical Crystals, 3rd edn., ed. by A.L. Schawlow, A.E. Siegman, T. Tamir (Springer, Berlin, 1999) Google Scholar
  20. 20.
    A. Yariv, Optical Electronics, 4th edn. (Saunders College, Philadelphia, 1991) Google Scholar
  21. 21.
    W. Sellmeier, Ann. Phys. Chem. 143, 272 (1871). Note that the page number for this article is often incorrectly quoted as 271 ADSCrossRefGoogle Scholar
  22. 22.
    D. Eimerl, L. Davis, S. Velsko, E.K. Graham, A. Zalkin, J. Appl. Phys. 62, 1968 (1987) ADSCrossRefGoogle Scholar
  23. 23.
    V.D. Volosov, Sov. Phys. Tech. Phys. 14, 1652 (1970) ADSGoogle Scholar
  24. 24.
    F.M. Librecht, J.A. Simons, IEEE J. Quantum Electron. QE-11, 850 (1975) ADSCrossRefGoogle Scholar
  25. 25.
    D.J. Kuizenga, Appl. Phys. Lett. 21, 570 (1972) ADSCrossRefGoogle Scholar
  26. 26.
    R. Fischer, P.V. Nickles, T.B. Chu, L.-W. Wieczorek, Ann. Phys. 39, 287 (1982) CrossRefGoogle Scholar
  27. 27.
    T. Freegarde, J. Coutts, J. Walz, D. Leibfried, T.W. Hänsch, J. Opt. Soc. Am. B 14, 2010 (1997) ADSCrossRefGoogle Scholar
  28. 28.
    J.C. Sandberg, Research toward laser spectroscopy of trapped atomic hydrogen. PhD thesis, MIT (1993) Google Scholar
  29. 29.
    T.W. Hänsch, B. Couillaud, Opt. Commun. 35, 441 (1980) ADSCrossRefGoogle Scholar
  30. 30.
  31. 31.
    C.S. Adams, A.I. Ferguson, Opt. Commun. 79, 219 (1990) ADSCrossRefGoogle Scholar
  32. 32.
    E.S. Polzik, H.J. Kimble, Opt. Lett. 16, 1400 (1991) ADSCrossRefGoogle Scholar
  33. 33.
    D.N. Nikogosyan, Appl. Phys. A 52, 359 (1991) ADSCrossRefGoogle Scholar
  34. 34.
    K.R. Brown, C. Ospelkaus, Y. Colombe, A.C. Wilson, D. Leibfried, D.J. Wineland, Nature 471, 196 (2011) ADSCrossRefGoogle Scholar

Copyright information

© Springer (outside the USA) 2011

Authors and Affiliations

  • A. C. Wilson
    • 1
    Email author
  • C. Ospelkaus
    • 1
    • 2
    • 3
  • A. P. VanDevender
    • 1
    • 4
  • J. A. Mlynek
    • 1
    • 5
  • K. R. Brown
    • 1
  • D. Leibfried
    • 1
  • D. J. Wineland
    • 1
  1. 1.Time & Frequency DivisionNational Institute of Standards & TechnologyBoulderUSA
  2. 2.The Institute of Quantum OpticsLeibniz Universität HannoverHannoverGermany
  3. 3.Physikalisch-Technische BundesanstaltBraunschweigGermany
  4. 4.Halcyon MolecularRedwood CityUSA
  5. 5.Department of Physics, Laboratory for Solid State PhysicsETHZurichSwitzerland

Personalised recommendations