Applied Physics B

, Volume 106, Issue 3, pp 619–627 | Cite as

Thermal effects in quantum cascade lasers at λ∼4.6 μm under pulsed and continuous-wave modes

Article

Abstract

The thermal effects in InGaAs/InAlAs quantum cascade lasers (QCLs) emitting at λ∼4.6 μm under pulsed and continuous-wave (CW) modes using a three-dimensional (3D) heat dissipation model were investigated. Based on the experimentally measured results, the thermal characteristics were theoretically analyzed for various device and heatsinking structures. Also, the heat accumulation effects and dissipation processes were studied in detail under pulsed operation. High cooling efficiencies were achieved by a relatively fast heat diffusion rate from the active core region for the epilayer-down bonded single ridge waveguide buried heterostructure (BH) with a thick electroplated Au around the laser ridge. A further improvement was made by the use of InP embedding layer. In CW mode, the thermal conductance (G th) value of 445 W/(K cm2) at 298 K was obtained for the epilayer-down bonded double-channel ridge waveguide QCL with AlN submount, which indicates a reasonable consistency with the available experimental data. By optimizing the device and heatsinking structures, the G th was improved to a high value of 673 W/(K cm2) at 298 K for the epilayer-down bonded single ridge waveguide BH QCL with InP embedding layer on diamond submount in CW mode.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A.L. Hutchinson, D.L. Sivco, J.N. Baillargeon, A.Y. Cho, H.C. Liu, IEEE J. Sel. Top. Quantum Electron. 6, 931 (2000) CrossRefGoogle Scholar
  2. 2.
    J.S. Yu, S. Slivken, A.J. Evans, M. Razeghi, IEEE J. Quantum Electron. 44, 747 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    Y. Bai, S. Slivken, S.R. Darvish, M. Razeghi, Appl. Phys. Lett. 93, 021103 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    M. Razeghi, IEEE J. Sel. Top. Quantum Electron. 15, 941 (2009) CrossRefGoogle Scholar
  5. 5.
    Y. Bai, S. Slivken, S. Kuboya, S.R. Darvish, M. Razeghi, Nat. Photonics 4, 99 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    A. Lops, V. Spagnolo, G. Scamarcio, J. Appl. Phys. 100, 043109 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    S.S. Howard, Z. Liu, D. Wasserman, A.J. Hoffman, T.S. Ko, C.F. Gmachl, IEEE J. Sel. Top. Quantum Electron. 13, 1054 (2007) CrossRefGoogle Scholar
  8. 8.
    V. Spagnolo, A. Lops, G. Scamarcio, M.S. Vitiello, C.D. Franco, J. Appl. Phys. 103, 043103 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    H.K. Lee, K.S. Chung, J.S. Yu, M. Razeghi, Phys. Status Solidi A 2, 356 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    H.K. Lee, J.S. Yu, Solid-State Electron. 54, 769 (2010) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    C.A. Evans, V.D. Jovanovic, D. Indjin, Z. Ikonic, P. Harrison, IEE Proc. Optoelectron. 153, 287 (2006) CrossRefGoogle Scholar
  12. 12.
    M.S. Vitiello, G. Scamarcio, V. Spagnolo, Appl. Phys. Lett. 92, 101116 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    C. Zhu, Y. Zhang, A. Li, Z. Tian, J. Appl. Phys. 100, 053105 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    C. Zhu, Y.G. Zhang, A.Z. Li, Y.L. Zheng, Semicond. Sci. Technol. 20, 563 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    G. Chen, Phys. Rev. B 57, 14958 (1998) ADSCrossRefGoogle Scholar
  16. 16.
    D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H. Maris, R. Merlin, S.R. Phillpot, J. Appl. Phys. 93, 793 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    S. Slivken, J.S. Yu, A. Evans, J. David, L. Doris, M. Razeghi, IEEE Photonics Technol. Lett. 16, 744 (2004) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Electronics and Radio EngineeringKyung Hee UniversityYonginKorea

Personalised recommendations