Applied Physics B

, Volume 106, Issue 1, pp 117–125 | Cite as

Transport of charged particles by adjusting rf voltage amplitudes

  • T. Karin
  • I. Le Bras
  • A. Kehlberger
  • K. Singer
  • N. Daniilidis
  • H. Häffner
Article

Abstract

We propose a planar architecture for scalable quantum information processing (QIP) that includes X-junctions through which particles can move without micromotion. This is achieved by adjusting radio frequency (rf) amplitudes to move an rf null along the legs of the junction. We provide a proof-of-principle by transporting dust particles in three dimensions via adjustable rf potentials in a 3D trap. For the proposed planar architecture, we use regularization techniques to obtain amplitude settings that guarantee smooth transport through the X-junction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Kielpinski, C. Monroe, D.J. Wineland, Nature 417, 709 (2002) ADSCrossRefGoogle Scholar
  2. 2.
    H. Haeffner, C.F. Roos, R. Blatt, Phys. Rep. 469, 155 (2008) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    D.J. Wineland et al., J. Res. Natl. Inst. Stand. Technol. 103, 259 (1998) CrossRefGoogle Scholar
  4. 4.
    C. Monroe, D.M. Meekhof, B.E. King, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 75, 4714 (1995) MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    C.A. Sackett, D. Kielpinski, B.E. King, C. Langer, V. Meyer, C.J. Myatt, M. Rowe, Q.A. Turchette, W.M. Itano, D.J. Wineland, C. Monroe, Nature 404, 256 (2000) ADSCrossRefGoogle Scholar
  6. 6.
    F. Schmidt-Kaler, H. Häffner, S. Gulde, M. Riebe, G. Lancaster, T. Deuschle, C. Becher, W. Hänsel, J. Eschner, C. Roos, R. Blatt, Appl. Phys. B, Lasers Opt. 77, 789 (2003). doi:10.1007/s00340-003-1346-9 ADSCrossRefGoogle Scholar
  7. 7.
    J.P. Home, D. Hanneke, J.D. Jost, J.M. Amini, D. Leibfried, D.J. Wineland, Science 325, 1227 (2009) MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    D. Hanneke, J.P. Home, J.D. Jost, J.M. Amini, D. Leibfried, D.J. Wineland, Nat. Phys. 6, 13 (2009) CrossRefGoogle Scholar
  9. 9.
    W.K. Hensinger, S. Olmschenk, D. Stick, D. Hucul, M. Yeo, M. Acton, L. Deslauriers, C. Monroe, Appl. Phys. Lett. 88, 34101 (2006) CrossRefGoogle Scholar
  10. 10.
    R.B. Blakestad, C. Ospelkaus, A.P. VanDevender, J.M. Amini, J. Britton, D. Leibfried, D.J. Wineland, Phys. Rev. Lett. 102, 153002 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    R. Blakestad, C. Ospelkaus, A. VanDevender, J. Wesenberg, M. Biercuk, D. Leibfried, D. Wineland, arXiv:1106.5005v1, June 2011
  12. 12.
    S. Seidelin, J. Chiaverini, R. Reichle, J.J. Bollinger, D. Leibfried, J. Britton, J.H. Wesenberg, R.B. Blakestad, R.J. Epstein, D.B. Hume, W.M. Itano, J.D. Jost, C. Langer, R. Ozeri, N. Shiga, D.J. Wineland, Phys. Rev. Lett. 96, 253003 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    C.E. Pearson, D.R. Leibrandt, W.S. Bakr, W.J. Mallard, K.R. Brown, I.L. Chuang, Phys. Rev. A 73, 032307 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    J.M. Amini, H. Uys, J.H. Wesenberg, S. Seidelin, J. Britton, J.J. Bollinger, D. Leibfried, C. Ospelkaus, A.P. VanDevender, D.J. Wineland, New J. Phys. 12, 033031 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    D.L. Moehring, C. Highstrete, D. Stick, K.M. Fortier, R. Haltli, C. Tigges, M.G. Blain, arXiv:1105.1834v1 (2011)
  16. 16.
    W. Paul, Rev. Mod. Phys. 62, 531 (1990) ADSCrossRefGoogle Scholar
  17. 17.
    J.H. Wesenberg, Phys. Rev. A 79, 013416 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    R.B. Blakestad, C. Ospelkaus, A.P. VanDevender, J.M. Amini, J. Britton, D. Leibfried, D.J. Wineland, Phys. Rev. Lett. 102, 153002 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    M. Cetina, A. Grier, J. Campbell, I. Chuang, V. Vuletić, Phys. Rev. A 76, 041401 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    A.P. VanDevender, Y. Colombe, J. Amini, D. Leibfried, D.J. Wineland, Phys. Rev. Lett. 105, 023001 (2010) ADSCrossRefGoogle Scholar
  21. 21.
    P.F. Herskind, A. Dantan, M. Albert, J.P. Marler, M. Drewsen, J. Phys. B, At. Mol. Opt. Phys. 42, 154008 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    M. Kumph, M. Brownnutt, R. Blatt, arXiv:1103.5428v2 (2011)
  23. 23.
    D. Hucul, M. Yeo, W.K. Hensinger, J. Rabchuk, S. Olmschenk, C. Monroe, Quantum Inf. Comput. 8, 501 (2008) MathSciNetMATHGoogle Scholar
  24. 24.
    K. Singer, U. Poschinger, M. Murphy, P. Ivanov, F. Ziesel, T. Calarco, F. Schmidt-Kaler, Rev. Mod. Phys. 82, 2609 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    K. Nabors, F.T. Korsmeyer, F.T. Leighton, J. White, SIAM J. Sci. Comput. 15, 713 (1994) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    D. Gerlich, Adv. Chem. Phys. LXXXII (1992) Google Scholar
  27. 27.
    A.H. Nizamani, W.K. Hensinger, arxiv:1007.3542, July 2010
  28. 28.
    T. Pruttivarasin, M. Ramm, I. Talukdar, A. Kreuter, H. Haeffner, arXiv:1104.0451v2 (2011)
  29. 29.
    J.P. Home, A.M. Steane, Quantum Inf. Comput. 6, 289 (2006) MATHGoogle Scholar
  30. 30.
    N. Daniilidis, T. Lee, R. Clark, S. Narayanan, H. Haeffner, J. Phys. B, At. Mol. Opt. Phys. 42, 154012 (2009) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • T. Karin
    • 1
    • 2
  • I. Le Bras
    • 1
    • 3
  • A. Kehlberger
    • 4
  • K. Singer
    • 4
  • N. Daniilidis
    • 1
  • H. Häffner
    • 1
  1. 1.Physics DepartmentUniversity of California BerkeleyBerkeleyUSA
  2. 2.Department of PhysicsUniversity of Washington SeattleSeattleUSA
  3. 3.Dept. of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyMambridgeUSA
  4. 4.Institut für PhysikJohannes Gutenberg Universität MainzMainzGermany

Personalised recommendations