Advertisement

Applied Physics B

, Volume 106, Issue 1, pp 211–221 | Cite as

Eu2+ and Eu3+ based “concentrated phosphors” as converters for UV LED light: two approaches and two new examples

  • M. BatentschukEmail author
  • R. Geisler
  • J. Hum
  • F. Iqbal
  • F. Meister
  • A. Osvet
  • A. Stiegelschmitt
  • A. Winnacker
Article

Abstract

The absolute majority of phosphors are composed of a host lattice and some percentage of an activator. At higher activator concentrations the concentration quenching occurs. However, there are phosphors in which only minor quenching of the emission occurs with increasing of the activator content. Based on the existence of two different valence states of the Eu ion (2+ and 3+), two approaches for the development of “concentrated phosphors”, i.e. light emitting materials in which the activator ion is a main part of the crystal lattice, are discussed. In both approaches, reduced energy migration leading to the luminescence quenching is considered as a main condition to reach a high quantum efficiency of a concentrated phosphor. Two kinds of phosphors—Eu2+-doped alumosilicate and Eu3+-doped oxyfluoride—are used as an experimental basis for this discussion. Starting from the stoichiometric \(\mathrm{Ca}_{1-x}\mathrm{Eu}_{x}^{2+}\mathrm{Al}_{2}\mathrm{Si}_{2}\mathrm{O}_{8}\) anorthite and Eu3+OF oxyfluorides, the non-stoichiometric powders with \(\mathrm{Eu}^{2+}_{0.92}\mathrm{Al}_{1.76}\mathrm{Si}_{2.24}\mathrm{O}_{8}\), Eu3+(O, F)2,35 and Eu3+(O, F)2,16 compositions were synthesized by a solid state reaction and investigated. It was shown that—in spite of the almost 100% Eu concentration—light converters with high quantum efficiency of more than 45% can be realized. A possible application of these materials as UV LED light converters for white light emitting diodes are discussed as well.

Keywords

Excitation Spectrum Concentrate Phosphor Concentration Quenching Energy Migration Emission Centre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994) CrossRefGoogle Scholar
  2. 2.
    E. Radkov, R. Bompiedi, A.M. Srivastava, A. Seltur, Ch.A. Becker, Proc. SPIE 5187, 171 (2004) ADSCrossRefGoogle Scholar
  3. 3.
    D. Eisert, U. Strauss, S. Bader, H.-J. Lugauer, M. Fehrer, B. Hahn, J. Baur, U. Zehnder, N. Stath, V. Härle, Inst. Pure Appl. Phys. Conf. Ser. 1, 841 (2000) Google Scholar
  4. 4.
    D.L. Dexter, J. Chem. Phys. 21, 836 (1953) ADSCrossRefGoogle Scholar
  5. 5.
    M.J. Weber, R.R. Monchamp, J. Appl. Phys. 44, 5495 (1973) ADSCrossRefGoogle Scholar
  6. 6.
    M.E. Globus, B.V. Grinyov, Inorganic Scintillators: Novel and Traditional Materials (Akta, Khar’kov, 2001) Google Scholar
  7. 7.
    S.H.M. Poort, W. Janssen, G. Blasse, J. Alloys Compd. 260, 93 (1997) CrossRefGoogle Scholar
  8. 8.
    T.J. Isaacs, J. Electrochem. Soc.: Solid State Sci. 118, 1009 (1971) Google Scholar
  9. 9.
    K.R. Laud, E.F. Gibbons, T.Y. Tien, H.L. Stadler, J. Electrochem. Soc.: Solid State Sci. 118, 918 (1971) Google Scholar
  10. 10.
    W.-J. Yang, L. Luo, T.-M. Chen, N.-S. Wang, Chem. Mater. 17, 3883 (2005) CrossRefGoogle Scholar
  11. 11.
    S.H.M. Poort, W.P. Blokpoel, G. Blasse, Chem. Mater. 7, 1547 (1995) CrossRefGoogle Scholar
  12. 12.
    D. He, Yanning Shi, D. Zhou, T. Hou, J. Lumin. 122–123, 158 (2007) CrossRefGoogle Scholar
  13. 13.
    Ph.M. Jaffe, Green-yellow emitting europium alumino silicate phosphor. Patent USA 3,359,210. Patented 19.12.1967 Google Scholar
  14. 14.
    P.M. Jaffe, J. Electrochem. Soc.: Solid State Sci. 116, 629 (1969) Google Scholar
  15. 15.
    T.-M. Chen, W.-J. Yang, Y.-T. Yeh, C.-Y. Tung, T.-H. Huang, F.-C. Chang, Y.C. Chen, W.-J. Liu, White light illumination device. Patent application US 2008/0149893 A1, published 26 Jun. (2008) Google Scholar
  16. 16.
    F. Meister, M. Batentschuk, S. Dröscher, A. Osvet, A. Stiegelschmitt, M. Weidner, A. Winnacker, Radiat. Meas. 42, 771 (2007) CrossRefGoogle Scholar
  17. 17.
    T. Jüstel, H. Nikol, C. Ronda, White light-emitting diode. Patent Application WO 98/39805, published 11.09.1998 Google Scholar
  18. 18.
    G. Cormier, J.A. Capobianco, C.A. Morrison, A. Monteil, Phys. Rev. B 48, 16290 (1993) ADSCrossRefGoogle Scholar
  19. 19.
    S.X. Lu, Y.C. Liu, J. Non-Cryst. Solids 353, 1037 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    M.M. Lezhnina, T. Jüstel, H. Kätker, D.U. Wiechert, U.H. Kynast, Adv. Funct. Mater. 16, 935 (2006) CrossRefGoogle Scholar
  21. 21.
    L. Zhu, X. Liu, J. Meng, X. Cao, Cryst. Growth Des. 7, 2505 (2007) CrossRefGoogle Scholar
  22. 22.
    K. Niihara, S. Yajiama, Bull. Chem. Soc. Jpn. 44, 643 (1971) CrossRefGoogle Scholar
  23. 23.
    B. Tanguy, M. Vlasse, J. Portier, Rev. Chim. Minér. 10, 63 (1973) Google Scholar
  24. 24.
    W.H. Zachariasen, Acta Crystallogr. 4, 231 (1951) CrossRefGoogle Scholar
  25. 25.
    A.I. Popov, G.E. Knudson, Journal of the American Chemical Society 3921 (1954) Google Scholar
  26. 26.
    D.B. Shinn, H.A. Eick, Inorg. Chem. 8, 232 (1969) CrossRefGoogle Scholar
  27. 27.
    M. Kimata, Mineral. Mag. 52, 257 (1988) CrossRefGoogle Scholar
  28. 28.
    T.J. Isaacs, J. Electrochem. Soc.: Solid State Sci. 118, 1009 (1971) Google Scholar
  29. 29.
    K.R. Laud, E.F. Gibbons, T. Y Tien, H.L. Stadler, J. Electrochem. Soc.: Solid State Sci. 118, 918 (1971) Google Scholar
  30. 30.
    Y. Wang, Z. Wang, P. Zhang, Z. Hong, X. Fan, G. Qian, Mater. Lett. 58, 3308 (2004) CrossRefGoogle Scholar
  31. 31.
    H.D. Megaw, C.J.E. Kempster, E.W. Radoslovich, Acta Crystallogr. 15, 1017 (1962) CrossRefGoogle Scholar
  32. 32.
    R.J. Angel, Am. Mineral. 73, 1114 (1988) Google Scholar
  33. 33.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976) ADSCrossRefGoogle Scholar
  34. 34.
    G. Bedford, E. Catalano, J. Solid State Chem. 2, 585 (1970) ADSCrossRefGoogle Scholar
  35. 35.
    J. Hölsä, Acta Chem. Scand. 45, 583 (1991) CrossRefGoogle Scholar
  36. 36.
    B.R. Judd, J. Chem. Phys. 44, 839 (1966) ADSCrossRefGoogle Scholar
  37. 37.
    A.W. Mann, D.J.M. Bevan, J. Solid State Chem. 5, 410 (1972) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • M. Batentschuk
    • 1
    Email author
  • R. Geisler
    • 1
  • J. Hum
    • 1
  • F. Iqbal
    • 1
  • F. Meister
    • 1
  • A. Osvet
    • 1
  • A. Stiegelschmitt
    • 1
  • A. Winnacker
    • 1
  1. 1.Department of Materials ScienceUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations