Advertisement

Applied Physics B

, 105:203 | Cite as

Stimulated Raman rotational photoacoustic spectroscopy using a quartz tuning fork and femtosecond excitation

  • W. Schippers
  • E. Gershnabel
  • J. Burgmeier
  • O. Katz
  • U. Willer
  • I. S. Averbukh
  • Y. Silberberg
  • W. Schade
Article

Abstract

Molecular alignment of linear molecules (O2, N2, CO2 and CO) is measured photoacoustically in the gas phase. The rotational excitation is accomplished using a simple femtosecond stimulated Raman excitation scheme, employing two femtosecond pulses with variable delay between the pulses. Molecular alignment is determined directly by measuring the energy dumped into the gas by quartz-enhanced photoacoustic spectroscopy (QEPAS), utilizing a quartz tuning fork as a sensitive photoacoustic transducer. The experimental results demonstrate for the first time the use of a tuning fork for resonant photoacoustic detection of Raman spectra excited by femtosecond double pulses and match both simulation and literature values.

Keywords

Laser Pulse Femtosecond Pulse Tuning Fork Rotational Energy Rotational Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.P. Cryan, P.H. Bucksbaum, R.N. Coffee, Phys. Rev. A 80, 063412 (2009) ADSCrossRefGoogle Scholar
  2. 2.
    K.F. Lee, I.V. Litvinyuk, P.W. Dooley, M. Spanner, D.M. Villeneuve, P.B. Corkum, J. Phys. B, At. Mol. Opt. Phys. 37, L43 (2004) ADSCrossRefGoogle Scholar
  3. 3.
    X. Zhao, X.M. Tong, C.D. Lin, Phys. Rev. A 67, 043404 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    A.A. Kosterev, Y.A. Bakhirkin, R.F. Curl, F.K. Tittel, Opt. Lett. 27, 1902 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    B. Friedrich, D. Herschbach, Phys. Rev. Lett. 74, 4623 (1995) ADSCrossRefGoogle Scholar
  6. 6.
    B. Friedrich, D. Herschbach, J. Chem. Phys. 111, 6157 (1999) ADSCrossRefGoogle Scholar
  7. 7.
    H. Stapelfeldt, T. Seideman, Rev. Mod. Phys. 75, 543 (2003) ADSCrossRefGoogle Scholar
  8. 8.
    V. Kumarappan, S.S. Viftrup, L. Holmegaard, C.Z. Bisgaard, H. Stapelfeldt, Phys. Scr. 76, C63 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    J.G. Underwood, B.J. Sussman, A. Stolow, Phys. Rev. Lett. 94, 143002 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    K.F. Lee, D.M. Villeneuve, P.B. Corkum, A. Stolow, J.G. Underwood, Phys. Rev. Lett. 97, 173001 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    D. Daems, S. Guérin, E. Hertz, H.R. Jauslin, B. Lavorel, O. Faucher, Phys. Rev. Lett. 95, 063005 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    E. Hertz, A. Rouzée, S. Guérin, B. Lavorel, O. Faucher, Phys. Rev. A 75, 031403(R) (2007) ADSCrossRefGoogle Scholar
  13. 13.
    S. Guérin, A. Rouzée, E. Hertz, Phys. Rev. A 77, 041404(R) (2008) ADSCrossRefGoogle Scholar
  14. 14.
    G.A. West, Rev. Sci. Instrum. 54, 797 (1983) ADSCrossRefGoogle Scholar
  15. 15.
    D.R. Siebert, G.A. West, J.J. Barrett, Appl. Opt. 19, 53 (1980) ADSCrossRefGoogle Scholar
  16. 16.
    A. Melchior, I. Bar, S. Rosenwaks, J. Phys. Chem. A 102, 7273 (1998) CrossRefGoogle Scholar
  17. 17.
    I.Sh. Averbukh, N.F. Perelman, Phys. Lett. A 139, 449 (1989) ADSCrossRefGoogle Scholar
  18. 18.
    R.W. Robinett, Phys. Rep. 392, 1 (2004) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    K. Liu, X. Guo, H. Yi, W. Chen, W. Zhang, X. Gao, Opt. Lett. 34, 1594 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    R. Bechmann, A.D. Ballato, T.J. Lukaszek, Proc. IRE 50, 1812 (1962) CrossRefGoogle Scholar
  21. 21.
    J. Bendtsen, J. Raman Spectrosc. 2, 133 (1974) ADSCrossRefGoogle Scholar
  22. 22.
    S. Fleischer, I.Sh. Averbukh, Y. Prior, J. Phys. B, At. Mol. Opt. Phys. 41, 074018 (2008) ADSCrossRefGoogle Scholar
  23. 23.
    W.H. Fletcher, J.S. Rayside, J. Raman Spectrosc. 2, 3 (1974) ADSCrossRefGoogle Scholar
  24. 24.
    G.A. West, J.J. Barrett, Opt. Lett. 4, 395 (1979) ADSCrossRefGoogle Scholar
  25. 25.
    G. Herzberg, Molecular Spectra and Molecular Structure II (Van Nostrand, New York, 1945), reprinted 1991 with corrections, pp. 16–20 Google Scholar
  26. 26.
    I.G. Nolt, J.V. Radostitz, G. DiLonardo, K.M. Evenson, D.A. Jennings, K.R. Leopold, M.D. Vanek, L.R. Zink, A. Hinz, K.V. Chance, J. Mol. Spectrosc. 125, 274 (1987) ADSCrossRefGoogle Scholar
  27. 27.
    N. Xu, C. Wu, Y. Gao, H. Jiang, H. Yang, Q. Gong, J. Phys. Chem. A 112, 612 (2008) CrossRefGoogle Scholar
  28. 28.
    N. Xu, C. Wu, J. Huang, Z. Wu, Q. Liang, H. Yang, Q. Gong, Opt. Express 14, 4992 (2006) ADSCrossRefGoogle Scholar
  29. 29.
    I.V. Litvinyuk, K.F. Lee, P.W. Dooley, D.M. Rayner, D.M. Villeneuve, P.B. Corkum, Phys. Rev. Lett. 90, 233003 (2003) ADSCrossRefGoogle Scholar
  30. 30.
    F. Baas, K.D. van den Hout, Physica 95A, 597 (1979) ADSGoogle Scholar
  31. 31.
    X. Liu, Y. Liu, H. Liu, Y. Deng, C. Wu, Q. Gong, J. Opt. Soc. Am. B 28, 293 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    D. Pavičić, K.F. Lee, D.M. Rayner, P.B. Corkum, D.N. Villeneuve, Phys. Rev. Lett. 98, 243001 (2007) ADSCrossRefGoogle Scholar
  33. 33.
    E. Gershnabel, R.J. Gordon, I.S. Averbukh, Phys. Rev. A 73, 061401(R) (2006) ADSCrossRefGoogle Scholar
  34. 34.
    G.B. Arfken, H.J. Weber, Mathematical Methods for Physicists, 6th edn. (Elsevier/Academic Press, San Diego, 2005) zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • W. Schippers
    • 1
  • E. Gershnabel
    • 2
  • J. Burgmeier
    • 1
  • O. Katz
    • 3
  • U. Willer
    • 1
  • I. S. Averbukh
    • 2
  • Y. Silberberg
    • 3
  • W. Schade
    • 1
    • 4
  1. 1.Clausthal University of TechnologyGoslarGermany
  2. 2.Department of Chemical PhysicsThe Weizmann Institute of ScienceRehovotIsrael
  3. 3.Department of Physics of Complex SystemsThe Weizmann Institute of ScienceRehovotIsrael
  4. 4.Fraunhofer Heinrich Hertz InstituteGoslarGermany

Personalised recommendations