Advertisement

Applied Physics B

, 104:547 | Cite as

Change of the refractive index in PPLN waveguides due to the photorefractive effect

  • O. KashinEmail author
  • M. Homann
  • V. Matusevich
  • F. Setzpfandt
  • T. Pertsch
  • R. Kowarschik
Article

Abstract

In this work we report the results of the experimental investigation of the refractive index change due to the photorefractive effect in periodically poled lithium niobate (PPLN) Ti-diffused waveguides in dependence on light intensity and sample temperature. We show an experimental method that allows for the direct determination of the refractive index change. The saturation state of the change of the refractive index is reached at 775 nm with input power of 50 μW.

Keywords

Lithium Niobate Effective Refractive Index Refractive Index Change Lithium Niobate Crystal Photorefractive Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P. Günter, J.P. Huignard, Photorefractive Materials and Their Applications II (Springer, Berlin, 2006) CrossRefGoogle Scholar
  2. 2.
    J.A. Armstrong, N. Bloembergen, J. Ducuing, P.S. Pershan, Phys. Rev. 127, 1918 (1962) ADSCrossRefGoogle Scholar
  3. 3.
    F. Lederer, G. Stegeman, D. Christodoulides, G. Assanto, M. Segev, Y. Silberberg, Phys. Rep. 463, 1 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    Y. Baek, R. Schiek, G. Stegeman, Opt. Lett. 20, 2168 (1995) ADSCrossRefGoogle Scholar
  5. 5.
    B. Bourliaguet, V. Couderc, A. Barthélémy, G. Ross, P. Smith, D. Hanna, C. De Angelis, Opt. Lett. 24, 1410 (1999) ADSCrossRefGoogle Scholar
  6. 6.
    R. Iwanow, R. Schiek, G.I. Stegeman, T. Pertsch, F. Lederer, Y. Min, W. Sohler, Phys. Rev. Lett. 93, 113902 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, Y. Min, Opt. Photonics News 19, 24 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    T. Pertsch, T. Zentgraf, U. Peschel, A. Bräuer, F. Lederer, Phys. Rev. Lett. 88, 093901 (2002) ADSCrossRefGoogle Scholar
  9. 9.
    M. Houe, P. Townsend, J. Phys. D, Appl. Phys. 28, 1747 (1995) ADSCrossRefGoogle Scholar
  10. 10.
    D. Eger, M.A. Arbore, M.M. Fejer, M.L. Bortz, J. Appl. Phys. 82, 998 (1997) ADSCrossRefGoogle Scholar
  11. 11.
    P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993) Google Scholar
  12. 12.
    R. Gerson, J. Kirchhoff, L. Halliburton, D. Bryan, J. Appl. Phys. 60, 3553 (1986) ADSCrossRefGoogle Scholar
  13. 13.
    T. Fujiwara, R. Srivastava, X. Cao, R.V. Ramaswamy, Opt. Lett. 18, 346 (1993) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • O. Kashin
    • 1
    Email author
  • M. Homann
    • 1
  • V. Matusevich
    • 1
  • F. Setzpfandt
    • 2
  • T. Pertsch
    • 2
  • R. Kowarschik
    • 1
  1. 1.Institut für Angewandte OptikFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Institut für Angewandte PhysikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations