Advertisement

Applied Physics B

, 105:185 | Cite as

A stochastic modeling of morphology formation by optical near-field processes

  • M. Naruse
  • T. Kawazoe
  • T. Yatsui
  • N. Tate
  • M. Ohtsu
Article

Abstract

We previously reported (S. Yukutake et al. in Appl. Phys. B 99:415, 2010) that by depositing Ag particles on the electrode of a photovoltaic device composed of poly(3-hexylthiophene) (P3HT) and ZnO under light illumination (wavelength λ=660 nm) while reversely biasing the P3HT/ZnO p–n junction, a unique granular Ag film was formed. The resultant device generated a photocurrent at wavelengths as long as 670 nm, which is longer than the long-wavelength cutoff λ c (=570 nm) of P3HT. Such an effect originates from a phonon-assisted process induced by an optical near field. In this paper, we analyze the morphological character of the Ag clusters and build a stochastic model in order to understand the principles behind the self-organized pattern formation process. The modeling includes the geometrical character of the material, its associated optical near fields, and the materials that flow in and out of the system. The model demonstrates behavior consistent with that observed in the experiment. We can see these phenomena as a new kind of self-organized criticality taking account of near-field effects, which will provide an insight into the analysis and design of future nanophotonic devices.

Keywords

Photovoltaic Device Cluster Area Reverse Bias Voltage Incidence Pattern Photocurrent Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Yukutake, T. Kawazoe, T. Yatsui, W. Nomura, K. Kitamura, M. Ohtsu, Appl. Phys. B 99, 415 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    T.A. Klar, T. Franzl, A.L. Rogach, J. Feldmann, Adv. Mater. 17, 769 (2005) CrossRefGoogle Scholar
  3. 3.
    M. Naruse, T. Kawazoe, R. Ohta, W. Nomura, M. Ohtsu, Phys. Rev. B 80, 125325 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    M. Naruse, T. Miyazaki, T. Kawazoe, S. Sangu, K. Kobayashi, F. Kubota, M. Ohtsu, IEICE Trans. Electron. E88-C, 1817 (2005) CrossRefGoogle Scholar
  5. 5.
    C. Pistol, C. Dwyer, A.R. Lebeck, IEEE MICRO 28, 7 (2008) CrossRefGoogle Scholar
  6. 6.
    H. Fujiwara, T. Kawazoe, M. Ohtsu, Appl. Phys. B 98, 283 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    T. Yatsui, K. Hirata, W. Nomura, Y. Tabata, M. Ohtsu, Appl. Phys. B 93, 55 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    S. Yamazaki, T. Yatsui, M. Ohtsu, Appl. Phys. Express 2, 031004 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, M. Naruse, Principles of Nanophotonics (Taylor & Francis, Boca Raton, 2008) CrossRefGoogle Scholar
  10. 10.
    K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, T. Takagahara, Phys. Rev. Lett. 91, 177401 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. A 38, 364 (1988) MathSciNetADSCrossRefzbMATHGoogle Scholar
  12. 12.
    M. Bredol, K. Matras, A. Szatkowski, J. Sanetra, A. Prodi-Schwab, Sol. Energy Mater. Sol. Cells 93, 662 (2009) CrossRefGoogle Scholar
  13. 13.
    J. Joo, J. Vac. Sci. Technol. 18, 23 (2000) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • M. Naruse
    • 1
    • 2
  • T. Kawazoe
    • 2
    • 3
  • T. Yatsui
    • 2
    • 3
  • N. Tate
    • 2
    • 3
  • M. Ohtsu
    • 2
    • 3
  1. 1.National Institute of Information and Communications TechnologyTokyoJapan
  2. 2.Nanophotonics Research Center, School of EngineeringThe University of TokyoTokyoJapan
  3. 3.Department of Electrical Engineering and Information Systems, School of EngineeringThe University of TokyoTokyoJapan

Personalised recommendations