Advertisement

Applied Physics B

, 105:293 | Cite as

Control of chirped pulse trains: a speedway for free-optimization experiments

  • N. X. TruongEmail author
  • J. Tiggesbäumker
  • K.-H. Meiwes-Broer
Article

Abstract

Complex phase-only shaping of intense ultrashort laser pulses is applied to generate highly flexible pulse structures with regular envelopes. By incorporating the linear chirp as additional free parameter into the technique of colored pulses, trains of chirped pulses are produced, capable of independent and simultaneous modulation of relative intensity ratio, optical delay, and individual chirp. Such pulses might find applications in multi-parameter scans or closed-loop feedback measurements. For the latter, we demonstrate that with use of these tailored pulse trains, adaptive feedback control experiments quickly converge. They provide near-optimal solutions, already revealing key features of the system under study. Moreover, seeding standard free-optimization routines with these temporary solutions largely accelerates the search for the closest-possible optimum.

Keywords

Pulse Train Double Pulse Chirp Pulse Spectral Phase Pulse Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    U. Keller, Nature 424, 831 (2003) ADSCrossRefGoogle Scholar
  2. 2.
    F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    J. Ye, S.T. Cundiff (eds.), Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Springer Science, New York, 2005) Google Scholar
  4. 4.
    S.T. Cundiff, A.M. Weiner, Nat. Photonics 4, 760 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    P. Nuernberger, G. Vogt, T. Brixner, G. Gerber, Phys. Chem. Chem. Phys. 9, 2470 (2007) CrossRefGoogle Scholar
  6. 6.
    T. Fennel, K.-H. Meiwes-Broer, J. Tiggesbäumker, P.-G. Reinhard, P.M. Dinh, E. Suraud, Rev. Mod. Phys. 82, 1793 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    R. Levis, G. Menkir, H. Rabitz, Science 292, 709 (2001) ADSCrossRefGoogle Scholar
  8. 8.
    A. Bartelt, T. Feurer, L. Wöste, Chem. Phys. 318, 207 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    N.X. Truong, J. Tiggesbäumker, K.H. Meiwes-Broer, J. Opt. 12, 115201 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    A.M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000) ADSCrossRefGoogle Scholar
  11. 11.
    A. Weiner, S. Oudin, D. Leaird, D. Reitze, J. Opt. Soc. Am. A 10, 1112 (1993) ADSCrossRefGoogle Scholar
  12. 12.
    A. Weiner, D. Leaird, Opt. Lett. 15, 51 (1990) ADSCrossRefGoogle Scholar
  13. 13.
    P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, G. Gerber, Appl. Phys. B 88, 519 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    D. Pestov, V.V. Lozovoy, M. Dantus, Opt. Express 17, 14351 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    M. Renard, R. Chaux, B. Lavorel, O. Faucher, Opt. Express 12, 473 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    G. Vogt, P. Nürnberger, R. Selle, F. Dimler, T. Brixner, G. Gerber, Phys. Rev. A 74, 033413 (2006) ADSCrossRefGoogle Scholar
  17. 17.
    N.X. Truong, S. Göde, J. Tiggesbäumker, K.-H. Meiwes-Broer, Eur. Phys. J. D 63, 275 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    S. Ashworth, T. Hasche, M. Woerner, E. Riedle, T. Elsaesser, J. Chem. Phys. 104, 5761 (1996) ADSCrossRefGoogle Scholar
  19. 19.
    G. Cerullo, C. Bardeen, Q. Wang, C. Shank, Chem. Phys. Lett. 262, 362 (1996) ADSCrossRefGoogle Scholar
  20. 20.
    G. Vogt, P. Nuernberger, T. Brixner, G. Gerber, Chem. Phys. Lett. 433, 211 (2006) ADSCrossRefGoogle Scholar
  21. 21.
    N.X. Truong, P. Hilse, S. Göde, A. Przystawik, T. Döppner, T. Fennel, T. Bornath, J. Tiggesbäumker, M. Schlanges, G. Gerber, K.H. Meiwes-Broer, Phys. Rev. A 81, 013201 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    A. Moore, K. Mendham, D. Symes, J. Robinson, E. Springate, M. Mason, R. Smith, J. Tisch, J. Marangos, Appl. Phys. B, Lasers Opt. 80, 101 (2005) ADSCrossRefGoogle Scholar
  23. 23.
    Y. Fukuda, K. Yamakawa, Y. Akahane, M. Aoyama, N. Inoue, H. Ueda, Y. Kishimoto, Phys. Rev. A 67, 061201 (2003) ADSCrossRefGoogle Scholar
  24. 24.
    F. Verluise, V. Laude, Z. Cheng, C. Spielmann, P. Tournois, Opt. Lett. 25, 575 (2000) ADSCrossRefGoogle Scholar
  25. 25.
    A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984) Google Scholar
  26. 26.
    N.X. Truong, J. Tiggesbäumker, T. Döppner, Meas. Sci. Technol. 21, 085303 (2010) ADSCrossRefGoogle Scholar
  27. 27.
    F. Grossmann, Theoretical Femtosecond Physics—Atoms and Molecules in Strong Laser Fields (Springer, Berlin, 2008) Google Scholar
  28. 28.
    H. Pohlheim, Evolutionäre Algorithmen: Verfahren, Operatoren und Hinweise für die Praxis (Springer, Berlin, 2000) Google Scholar
  29. 29.
    R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, London, 2000) Google Scholar
  30. 30.
    R.N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 2000) Google Scholar
  31. 31.
    P. Nuernberger, Opt. Commun. 282, 227 (2009) ADSCrossRefGoogle Scholar
  32. 32.
    J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic Press, London, 2006) Google Scholar
  33. 33.
    R. Judson, H. Rabitz, Phys. Rev. Lett. 68, 1500 (1992) ADSCrossRefGoogle Scholar
  34. 34.
    S. Kirkpatrick, C. Gelatt, M. Vecchi, Science 220, 671 (1983) MathSciNetADSCrossRefzbMATHGoogle Scholar
  35. 35.
    T.C. Gunaratne, X. Zhu, V.V. Lozovoy, M. Dantus, Chem. Phys. 338, 259 (2007) ADSCrossRefGoogle Scholar
  36. 36.
    S. Rausch, T. Binhammer, A. Harth, F.X. Kaertner, U. Morgner, Opt. Express 16, 17410 (2008) ADSCrossRefGoogle Scholar
  37. 37.
    S. Bonora, D. Brida, P. Villoresi, G. Cerullo, Opt. Express 18, 23147 (2010) ADSCrossRefGoogle Scholar
  38. 38.
    P. Marquetand, P. Nuernberger, G. Vogt, T. Brixner, V. Engel, Europhys. Lett. 80, 53001 (2007) ADSCrossRefGoogle Scholar
  39. 39.
    M. Wollenhaupt, M. Krug, J. Koehler, T. Bayer, C. Sarpe-Tudoran, T. Baumert, Appl. Phys. B 95, 245 (2009) ADSCrossRefGoogle Scholar
  40. 40.
    C.J. Bardeen, Q. Wang, C.V. Shank, Phys. Rev. Lett. 75, 3410 (1995) ADSCrossRefGoogle Scholar
  41. 41.
    C.J. Bardeen, Q. Wang, C.V. Shank, J. Phys. Chem. A 102, 2759 (1998) CrossRefGoogle Scholar
  42. 42.
    G. Lanzani, M. Zavelani-Rossi, G. Cerullo, D. Comoretto, G. Dellepiane, Phys. Rev. B 69, 134302 (2004) ADSCrossRefGoogle Scholar
  43. 43.
    A. Wand, S. Kallush, O. Shoshanim, O. Bismuth, R. Kosloff, S. Ruhman, Phys. Chem. Chem. Phys. 12, 2149 (2010) CrossRefGoogle Scholar
  44. 44.
    T. Fennel, T. Döppner, J. Passig, C. Schaal, J. Tiggesbäumker, K.-H. Meiwes-Broer, Phys. Rev. Lett. 98, 143401 (2007) ADSCrossRefGoogle Scholar
  45. 45.
    C. Brif, R. Chakrabarti, H. Rabitz, New J. Phys. 12, 075008 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • N. X. Truong
    • 1
    Email author
  • J. Tiggesbäumker
    • 2
  • K.-H. Meiwes-Broer
    • 2
  1. 1.FOM—Institute for Atomic and Molecular Physics (AMOLF)AmsterdamThe Netherlands
  2. 2.Institut für PhysikUniversität RostockRostockGermany

Personalised recommendations