Advertisement

Applied Physics B

, Volume 106, Issue 1, pp 25–36 | Cite as

An all-solid-state laser source at 671 nm for cold-atom experiments with lithium

  • U. EismannEmail author
  • F. Gerbier
  • C. Canalias
  • A. Zukauskas
  • G. Trénec
  • J. Vigué
  • F. Chevy
  • C. Salomon
Article

Abstract

We present an all-solid-state narrow-linewidth laser source emitting 670 mW output power at 671 nm delivered in a diffraction-limited beam. The source is based on a frequency-doubled diode-end-pumped ring laser operating on the 4 F 3/24 I 13/2 transition in Nd:YVO4. By using periodically poled potassium titanyl phosphate (ppKTP) in an external buildup cavity, doubling efficiencies of up to 86% are obtained. Tunability of the source over 100 GHz is accomplished. We demonstrate the suitability of this robust frequency-stabilized light source for laser cooling of lithium atoms. Finally, a simplified design based on intra-cavity doubling is described and first results are presented.

Keywords

Free Spectral Range Absorb Pump Power Relative Intensity Noise Optical Dipole Trap Doubling Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    J.T.F. Johnston, R.H. Brady, W. Proffitt, Appl. Opt. 21, 2307 (1982) ADSCrossRefGoogle Scholar
  3. 3.
    A. Miffre, M. Jacquey, M. Büchner, G. Trénec, J. Vigué, Phys. Scr. 74, C15 (2006) CrossRefGoogle Scholar
  4. 4.
    S.A. Payne, L.K. Smith, R.J. Beach, B.H.T. Chai, J.H. Tassano, L.D. DeLoach, W.L. Kway, R.W. Solarz, W.F. Krupke, Appl. Opt. 33, 5526 (1994) ADSCrossRefGoogle Scholar
  5. 5.
    I.E. Olivares, A.E. Duarte, E.A. Saravia, F.J. Duarte, Appl. Opt. 41, 2973 (2002) ADSCrossRefGoogle Scholar
  6. 6.
    A. Agnesi, A. Guandalini, G. Reali, J. Opt. Soc. Am. B 19, 1078 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    A. Agnesi, A. Guandalini, G. Reali, S. Dell’Acqua, G. Piccinno, Opt. Lett. 29, 56 (2004) ADSCrossRefGoogle Scholar
  8. 8.
    Y.-F. Lü, X.-H. Zhang, J. Xia, X.-D. Yin, A.-F. Zhang, L. Bao, W. Lü, Opt. Laser Technol. 42, 522 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    H. Ogilvy, M. Withford, P. Dekker, J. Piper, Opt. Express 11, 2411 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    A.-Y. Yao, W. Hou, X.-C. Lin, Y. Bi, R.-N. Li, D.-F. Cui, Z.-Y. Xu, Opt. Commun. 231, 413 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    A.-Y. Yao, W. Hou, Y. Bi, A.-C. Geng, X.-C. Lin, Y.-P. Kong, D.-F. Cui, L.-A. Wu, Z.-Y. Xu, Appl. Opt. 44, 7156 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    L. Zhang, C. Li, D. Li, P. Li, Q. Zhang, Z. Zhang, Opt. Laser Technol. 37, 524 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    Q. Zheng, H. Tan, L. Zhao, L. Qian, Opt. Laser Technol. 34, 329 (2002) ADSCrossRefGoogle Scholar
  14. 14.
    Q. Zheng, J.-Y. Wang, L. Zhao, Opt. Laser Technol. 36, 485 (2004) ADSCrossRefGoogle Scholar
  15. 15.
    F. Lenhardt, A. Nebel, R. Knappe, M. Nittmann, J. Bartschke, J.A. L’huillier, in Conf. Lasers and Electro-Optics (Optical Society of America, San Jose, 2010), p. CThEE5 Google Scholar
  16. 16.
    R. Sarrouf, V. Sousa, T. Badr, G. Xu, J.-J. Zondy, Opt. Lett. 32, 2732 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    A.E. Siegman, Lasers (University Science Books, Mill Valley, 1986) Google Scholar
  18. 18.
    L. Fornasiero, S. Kück, T. Jensen, G. Huber, B. Chai, Appl. Phys. B, Lasers Opt. 67, 549 (1998) ADSCrossRefGoogle Scholar
  19. 19.
    J. Doualan, P. Camy, R. Moncorgé, private communication (unpublished) Google Scholar
  20. 20.
    M. Okida, M. Itoh, T. Yatagai, H. Ogilvy, J. Piper, T. Omatsu, Opt. Express 13, 4909 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    Y.F. Chen, T.M. Huang, C.F. Kao, C.L. Wang, S.C. Wang, IEEE J. Quantum Electron. 33, 1424 (1997) ADSCrossRefGoogle Scholar
  22. 22.
    G. Trénec, W. Volondat, O. Cugat, J. Vigué, Appl. Opt. 50, 4788 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    R. Sarrouf, T. Badr, J.J. Zondy, J. Opt. A, Pure Appl. Opt. 10, 104011 (2008) ADSCrossRefGoogle Scholar
  24. 24.
    W. Leeb, Appl. Phys. A, Mater. Sci. Process. 6, 267 (1975) Google Scholar
  25. 25.
    L. McDonagh, R. Wallenstein, R. Knappe, A. Nebel, Opt. Lett. 31, 3297 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, N. Peyghambarian, Appl. Phys. Lett. 81, 2145 (2002) ADSCrossRefGoogle Scholar
  27. 27.
    D.B. Leviton, B.J. Frey, T.J. Madison, Proc. SPIE 6692, 669204 (2007) CrossRefGoogle Scholar
  28. 28.
    G.D. Boyd, D.A. Kleinman, J. Appl. Phys. 39, 3597 (1968) ADSCrossRefGoogle Scholar
  29. 29.
    L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, J.W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995) ADSCrossRefGoogle Scholar
  30. 30.
    R. Boyd, Nonlinear Optics (Academic Press, San Diego, 2003) Google Scholar
  31. 31.
    M. Peltz, U. Bäder, A. Borsutzky, R. Wallenstein, J. Hellström, H. Karlsson, V. Pasiskevicius, F. Laurell, Appl. Phys. B, Lasers Opt. 73, 663 (2001) ADSCrossRefGoogle Scholar
  32. 32.
    C. Canalias, S. Wang, V. Pasiskevicius, F. Laurell, Appl. Phys. Lett. 88, 032905 (2006) ADSCrossRefGoogle Scholar
  33. 33.
    K. Fradkin, A. Arie, A. Skliar, G. Rosenman, Appl. Phys. Lett. 74, 914 (1999) ADSCrossRefGoogle Scholar
  34. 34.
    S. Emanueli, A. Arie, Appl. Opt. 42, 6661 (2003) ADSCrossRefGoogle Scholar
  35. 35.
    E. Mimoun, L.D. Sarlo, J.-J. Zondy, J. Dalibard, F. Gerbier, Opt. Express 16, 18684 (2008) ADSCrossRefGoogle Scholar
  36. 36.
    V.A. Maslov, V.A. Mikhailov, O.P. Shaunin, I.A. Shcherbakov, Quantum Electron. 27, 356 (1997) ADSCrossRefGoogle Scholar
  37. 37.
    B. Boulanger, I. Rousseau, J.P. Feve, M. Maglione, B. Menaert, G. Marnier, IEEE J. Quantum Electron. 35, 281 (1999) ADSCrossRefGoogle Scholar
  38. 38.
    F. Torabi-Goudarzi, E. Riis, Opt. Commun. 227, 389 (2003) ADSCrossRefGoogle Scholar
  39. 39.
    A. Arie, G. Rosenman, A. Korenfeld, A. Skliar, M. Oron, M. Katz, D. Eger, Opt. Lett. 23, 28 (1998) ADSCrossRefGoogle Scholar
  40. 40.
    E. Mimoun, L. De Sarlo, J.-J. Zondy, J. Dalibard, F. Gerbier, Appl. Phys. B, Lasers Opt. 99, 31 (2010) ADSCrossRefGoogle Scholar
  41. 41.
    S. Nascimbène, N. Navon, K.J. Jiang, L. Tarruell, M. Teichmann, J. McKeever, F. Chevy, C. Salomon, Phys. Rev. Lett. 103, 170402 (2009) ADSCrossRefGoogle Scholar
  42. 42.
    W.I. McAlexander, E.R.I. Abraham, R.G. Hulet, Phys. Rev. A 54, R5 (1996) ADSCrossRefGoogle Scholar
  43. 43.
    F. Biraben, Opt. Commun. 29, 353 (1979) ADSCrossRefGoogle Scholar
  44. 44.
    R. Smith, IEEE J. Quantum Electron. 6, 215 (1970) ADSCrossRefGoogle Scholar
  45. 45.
    W.W. Rigrod, J. Appl. Phys. 36, 2487 (1965) ADSCrossRefGoogle Scholar
  46. 46.
    P. Laporta, M. Brussard, IEEE J. Quantum Electron. 27, 2319 (1991) ADSCrossRefGoogle Scholar
  47. 47.
    Y.F. Chen, T.S. Liao, C.F. Kao, T.M. Huang, K.H. Lin, S.C. Wang, IEEE J. Quantum Electron. 32, 2010 (1996) ADSCrossRefGoogle Scholar
  48. 48.
    Y.F. Chen, L.J. Lee, T.M. Huang, C.L. Wang, Opt. Commun. 163, 198 (1999) ADSCrossRefGoogle Scholar
  49. 49.
    F.J. Kontur, I. Dajani, Y. Lu, R.J. Knize, Opt. Express 15, 12882 (2007) ADSCrossRefGoogle Scholar
  50. 50.
  51. 51.
    A.W. Tucker, M. Birnbaum, C.L. Fincher, J.W. Erler, J. Appl. Phys. 48, 4907 (1977) ADSCrossRefGoogle Scholar
  52. 52.
    Y.-F. Chen, IEEE J. Quantum Electron. 35, 234 (1999) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • U. Eismann
    • 1
    Email author
  • F. Gerbier
    • 1
  • C. Canalias
    • 3
  • A. Zukauskas
    • 3
  • G. Trénec
    • 2
  • J. Vigué
    • 2
  • F. Chevy
    • 1
  • C. Salomon
    • 1
  1. 1.Laboratoire Kastler Brussel, ENS, UPMCCNRS UMR 8552ParisFrance
  2. 2.Laboratoire Collisions Agrégats Réactivité, Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes, LCAR, Université de ToulouseUniversité Paul Sabatier and CNRS UMR 5589ToulouseFrance
  3. 3.Department of Applied Physics, Royal Institute of TechnologyAlbaNova UniversitetscentrumStockholmSweden

Personalised recommendations