Applied Physics B

, 105:113 | Cite as

Structuring of material parameters in lithium niobate crystals with low-mass, high-energy ion radiation

  • K. Peithmann
  • P.-D. Eversheim
  • J. Goetze
  • M. Haaks
  • H. Hattermann
  • S. Haubrich
  • F. Hinterberger
  • L. Jentjens
  • W. Mader
  • N. L. Raeth
  • H. Schmid
  • M.-R. Zamani-Meymian
  • K. Maier
Article

Abstract

Ferroelectric lithium niobate crystals offer a great potential for applications in modern optics. To provide powerful optical components, tailoring of key material parameters, especially of the refractive index n and the ferroelectric domain landscape, is required. Irradiation of lithium niobate crystals with accelerated ions causes strong structured modifications in the material. The effects induced by low-mass, high-energy ions (such as 3He with 41 MeV, which are not implanted, but transmit through the entire crystal volume) are reviewed. Irradiation yields large changes of the refractive index Δn, improved domain engineering capability within the material along the ion track, and waveguiding structures. The periodic modification of Δn as well as the formation of periodically poled lithium niobate (PPLN) (supported by radiation damage) is described. Two-step knock-on displacement processes, 3He→Nb and 3He→O causing thermal spikes, are identified as origin for the material modifications.

References

  1. 1.
    H.J. Coufal, D. Psaltis, G.T. Sincerbox, Holographic Data Storage (Springer, Berlin, 2000) MATHGoogle Scholar
  2. 2.
    R.M. Shelby, J.A. Hoffnagle, G.W. Burr, C.M. Jefferson, M.-P. Bernal, H. Coufal, R.K. Grygier, H. Guenther, R.M. Macfarlane, G.T. Sincerbox, Opt. Lett. 22, 1509 (1997) ADSCrossRefGoogle Scholar
  3. 3.
    K. Peithmann, A. Wiebrock, K. Buse, Appl. Phys. B 68, 777 (1999) ADSCrossRefGoogle Scholar
  4. 4.
    F.H. Mok, Opt. Lett. 18, 915 (1993) ADSCrossRefGoogle Scholar
  5. 5.
    A. Ashkin, G.D. Boyd, J.M. Dziedzic, R.G. Smith, A.A. Ballman, J.J. Levinstein, K. Nassau, Appl. Phys. Lett. 9, 72 (1966) ADSCrossRefGoogle Scholar
  6. 6.
    A.M. Glass, D. von der Linde, T.J. Negran, Appl. Phys. Lett. 25, 233 (1974) ADSCrossRefGoogle Scholar
  7. 7.
    V. Leyva, G.A. Rakuljic, B. O’Conner, Appl. Phys. Lett. 65, 1079 (1994) ADSCrossRefGoogle Scholar
  8. 8.
    S. Breer, H. Vogt, I. Nee, K. Buse, Electron. Lett. 34, 2419 (1999) CrossRefGoogle Scholar
  9. 9.
    R.C. Alferness, R.V. Schmidt, E.H. Turner, Appl. Opt. 18, 4012 (1979) ADSCrossRefGoogle Scholar
  10. 10.
    W.K. Burns, A.B. Lee, A.F. Milton, Appl. Phys. Lett. 29, 790 (1976) ADSCrossRefGoogle Scholar
  11. 11.
    V. Ramaswamy, M.D. Divino, R.D. Standley, Appl. Phys. Lett. 32, 644 (1978) ADSCrossRefGoogle Scholar
  12. 12.
    R.V. Schmidt, I.P. Kaminow, Appl. Phys. Lett. 25, 458 (1974) ADSCrossRefGoogle Scholar
  13. 13.
    D. Kip, Appl. Phys. B 67, 131 (1998) ADSCrossRefGoogle Scholar
  14. 14.
    C. Becker, A. Greiner, T. Oesselke, A. Pape, W. Sohler, H. Suche, Opt. Lett. 23, 1194 (1998) ADSCrossRefGoogle Scholar
  15. 15.
    J.J. Amodei, W. Phillips, D.L. Staebler, IEEE J. Quantum Electron. 7, 321 (1971) ADSCrossRefGoogle Scholar
  16. 16.
    K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, E. Krätzig, Phys. Rev. B 56, 1225 (1997) ADSCrossRefGoogle Scholar
  17. 17.
    J. Hukriede, B. Gather, D. Kip, E. Krätzig, Phys. Status Solidi A 172, R3 (1999) CrossRefGoogle Scholar
  18. 18.
    K. Peithmann, J. Hukriede, K. Buse, E. Krätzig, Phys. Rev. B 61, 4615 (2000) ADSCrossRefGoogle Scholar
  19. 19.
    G.L. Destefanis, P.D. Townsend, J.P. Galliard, Appl. Phys. Lett. 32, 293 (1978) ADSCrossRefGoogle Scholar
  20. 20.
    G.L. Destefanis, J.P. Galliard, E.L. Ligeon, S. Valette, B.W. Farmery, P.D. Townsend, A. Perez, J. Appl. Phys. 50, 7898 (1979) ADSCrossRefGoogle Scholar
  21. 21.
    P.J. Chandler, P.D. Townsend, Nucl. Instrum. Methods Phys. Res. B 19–20, 921 (1987) CrossRefGoogle Scholar
  22. 22.
    E. Glavas, L. Zhang, P.J. Chandler, P.D. Townsend, Nucl. Instrum. Methods Phys. Res. B 32, 45 (1988) ADSCrossRefGoogle Scholar
  23. 23.
    L. Zhang, P.J. Chandler, P.D. Townsend, Nucl. Instrum. Methods Phys. Res. B 59–60, 1147 (1991) CrossRefGoogle Scholar
  24. 24.
    H. Hu, F. Chen, B.-R. Shi, K.-M. Wang, D.-Y. Shen, Appl. Opt. 40, 3759 (2001) ADSCrossRefGoogle Scholar
  25. 25.
    H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, D.-Y. Shen, J. Appl. Phys. 89, 5224 (2001) ADSCrossRefGoogle Scholar
  26. 26.
    G.G. Bentini, M. Bianconi, M. Chiarini, L. Correda, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, R. Guzzi, J. Appl. Phys. 92, 6477 (2002) ADSCrossRefGoogle Scholar
  27. 27.
    J. Olivares, G. Garcia, A. Garcia-Navarro, F. Agullo-Lopez, O. Caballero, A. Garcia-Cabanes, Appl. Phys. Lett. 86, 183501 (2005) ADSCrossRefGoogle Scholar
  28. 28.
    A. Rivera, J. Olivares, G. Garcia, J.M. Cabrera, F. Agullo-Rueda, F. Agullo-Lopez, Phys. Status Solidi A 206, 1109 (2009) ADSCrossRefGoogle Scholar
  29. 29.
    D.F. Nelson, R.M. Mikulyak, J. Appl. Phys. 45, 3688 (1974) ADSCrossRefGoogle Scholar
  30. 30.
    B. Andreas, K. Peithmann, K. Buse, K. Maier, Appl. Phys. Lett. 84, 3813 (2004) ADSCrossRefGoogle Scholar
  31. 31.
    J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985) Google Scholar
  32. 32.
    L. Jentjens, H. Hattermann, K. Peithmann, M. Haaks, K. Maier, M. Kösters, J. Appl. Phys. 103, 034104 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    K. Peithmann, M.-R. Zamani-Meymian, M. Haaks, K. Maier, B. Andreas, I. Breunig, J. Opt. Soc. Am. B 23, 2107 (2006) ADSCrossRefGoogle Scholar
  34. 34.
    B. Andreas, I. Breunig, K. Buse, ChemPhysChem 6, 1 (2005) CrossRefGoogle Scholar
  35. 35.
    K. Peithmann, A. Wiebrock, K. Buse, E. Krätzig, J. Opt. Soc. Am. B 17, 586 (2000) ADSCrossRefGoogle Scholar
  36. 36.
    M.-R. Zamani-Meymian, L. Jentjens, N.L. Raeth, K. Peithmann, K. Maier, Appl. Phys. A 98, 909 (2010) ADSCrossRefGoogle Scholar
  37. 37.
    J. Burghoff, H. Hartung, S. Nolte, A. Tünnermann, Appl. Phys. A 86, 165 (2007) ADSCrossRefGoogle Scholar
  38. 38.
    L. Jentjens, N.L. Raeth, K. Peithmann, K. Maier, J. Appl. Phys. 109, 124104 (2011) ADSCrossRefGoogle Scholar
  39. 39.
    E.R. Hodgson, F. Agullo-Lopez, Nucl. Instrum. Methods Phys. Res. B 32, 42 (1988) ADSCrossRefGoogle Scholar
  40. 40.
    R. Pareja, R. Gonzalez, M.A. Pedrosa, Phys. Status Solidi A 84, 179 (1984) ADSCrossRefGoogle Scholar
  41. 41.
    F. Jermann, M. Simon, R. Böwer, E. Krätzig, O.F. Schirmer, Ferroelectrics 165, 319 (1995) CrossRefGoogle Scholar
  42. 42.
    H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969) Google Scholar
  43. 43.
    F. Hinterberger, H.G. Ehrlich, K. Euler, W. Hehemeyer, P. Meyer, P.V. Rossen, B. Schuller, G. Welp, Nucl. Instrum. Methods 130, 335 (1975) ADSCrossRefGoogle Scholar
  44. 44.
    F. Hinterberger, Physik der Teilchenbeschleuniger und Ionenoptik (Springer, Berlin, 2008) Google Scholar
  45. 45.
    U. Rohrer, P.S.I. Note (2005). http://pc532.psi.ch/trans.htm, based on a CERN–SLAC–FERMILAB version by K.L. Brown, D.C. Carey, C. Iselin, and F. Rothacker, Software and Information, CERN Rep. 80 (1980)
  46. 46.
    G.A. Magel, M.M. Fejer, R.L. Byer, Appl. Phys. Lett. 56, 234 (1989) Google Scholar
  47. 47.
    M. Yamada, N. Nada, M. Saitoh, K. Watanabe, Appl. Phys. Lett. 62, 435 (1993) ADSCrossRefGoogle Scholar
  48. 48.
    R. Sowade, I. Breunig, I.C. Mayorga, J. Kiessling, C. Tulea, V. Dierolf, K. Buse, Opt. Express 17, 22303 (2009) ADSCrossRefGoogle Scholar
  49. 49.
    I. Breunig, J. Kiessling, R. Sowade, B. Knabe, K. Buse, New J. Phys. 10, 073003 (2008) ADSCrossRefGoogle Scholar
  50. 50.
    M.C. Wengler, B. Fassbender, E. Soergel, K. Buse, J. Appl. Phys. 96, 2816 (2004) ADSCrossRefGoogle Scholar
  51. 51.
    C.E. Valdivia, C.L. Sones, S. Mailis, J.D. Mills, R.W. Eason, Ferroelectrics 340, 75 (2006) CrossRefGoogle Scholar
  52. 52.
    M.C. Wengler, M. Müller, E. Soergel, K. Buse, Appl. Phys. B 76, 393 (2003) ADSCrossRefGoogle Scholar
  53. 53.
    M.C. Wengler, U. Heinemeyer, E. Soergel, K. Buse, J. Appl. Phys. 98, 064104 (2005) ADSCrossRefGoogle Scholar
  54. 54.
    L. Jentjens, K. Peithmann, K. Maier, H. Steigerwald, T. Jungk, Appl. Phys. B 95, 441 (2009) ADSCrossRefGoogle Scholar
  55. 55.
    R.S. Weis, T.K. Gaylord, Appl. Phys. A 37, 191 (1985) ADSCrossRefGoogle Scholar
  56. 56.
    H. Steigerwald, F. Luedke, K. Buse, Appl. Phys. Lett. 94, 032906 (2009) ADSCrossRefGoogle Scholar
  57. 57.
    A.C. Muir, C.L. Sones, S. Mailis, R.W. Eason, T. Jungk, Á. Hoffmann, E. Soergel, Opt. Express 16, 2336 (2008) ADSCrossRefGoogle Scholar
  58. 58.
    C.L. Sones, A.C. Muir, Y.J. Ying, S. Mailis, R.W. Eason, T. Jungk, Á. Hoffmann, E. Soergel, Appl. Phys. Lett. 92, 072905 (2008) ADSCrossRefGoogle Scholar
  59. 59.
    D. Gabor, Nature 161, 777 (1948) ADSCrossRefGoogle Scholar
  60. 60.
    E. Krätzig, H. Kurz, Ferroelectrics 13, 295 (1976) CrossRefGoogle Scholar
  61. 61.
    E. Krätzig, Ferroelectrics 21, 635 (1978) CrossRefGoogle Scholar
  62. 62.
    E. Krätzig, R. Orlowski, Ferroelectrics 27, 241 (1980) CrossRefGoogle Scholar
  63. 63.
    D. Kaletta, K. Ehrlich, J. Nucl. Mater. 51, 227 (1974) ADSCrossRefGoogle Scholar
  64. 64.
    M.-R. Zamani-Meymian, K. Peithmann, K. Maier, H. Schmid, W. Mader, J. Phys., Condens. Matter 21, 075402 (2009) ADSCrossRefGoogle Scholar
  65. 65.
    H.K. Schmid, J. Microsc. 194, 192 (1999) CrossRefGoogle Scholar
  66. 66.
    B. Canut, R. Brenier, A. Meftah, P. Moretti, S.O. Salem, S. Ramos, P. Thevenard, M. Toulemonde, Nucl. Instrum. Methods Phys. Res. B 91, 312 (1994) ADSCrossRefGoogle Scholar
  67. 67.
    N. Itoh, A.M. Stoneham, Nucl. Instrum. Methods Phys. Res. B 146, 362 (1998) ADSCrossRefGoogle Scholar
  68. 68.
    A. Meftah, F. Brisard, J.M. Costantini, M. Hage-Ali, J.P. Stoquert, F. Studer, M. Toulemonde, Phys. Rev. B 48, 920 (1993) ADSCrossRefGoogle Scholar
  69. 69.
    G. Szenes, Nucl. Instrum. Methods Phys. Res. B 191, 54 (2002) ADSCrossRefGoogle Scholar
  70. 70.
    M. Toulemonde, C. Dufour, A. Meftah, E. Paumier, Nucl. Instrum. Methods Phys. Res. B 166–167, 903 (2000) CrossRefGoogle Scholar
  71. 71.
    L.O. Svaasand, M. Eriksrud, A.P. Grande, F. Mo, J. Cryst. Growth 18, 179 (1973) ADSCrossRefGoogle Scholar
  72. 72.
    T. Vitova, M.-R. Zamani-Meymian, K. Peithmann, K. Maier, J. Hormes, J. Phys., Condens. Matter 21, 495401 (2009) CrossRefGoogle Scholar
  73. 73.
    A. Garcia-Navarro, F. Agullo-Lopez, J. Olivares, J. Lamela, F. Jaque, J. Appl. Phys. 103, 093540 (2008) ADSCrossRefGoogle Scholar
  74. 74.
    Y. Jiang, K.-M. Wang, X.-L. Wang, F. Chen, C.-L. Jia, L. Wang, Y. Jiao, F. Lu, Phys. Rev. B 75, 195101 (2007) ADSCrossRefGoogle Scholar
  75. 75.
    J. Burghoff, S. Nolte, A. Tünnermann, Appl. Phys. A 89, 127 (2007) ADSCrossRefGoogle Scholar
  76. 76.
    K. Peithmann, M.-R. Zamani-Meymian, M. Haaks, K. Maier, B. Andreas, K. Buse, H. Modrow, Appl. Phys. B 82, 419 (2006) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • K. Peithmann
    • 1
  • P.-D. Eversheim
    • 1
  • J. Goetze
    • 1
  • M. Haaks
    • 1
  • H. Hattermann
    • 1
  • S. Haubrich
    • 1
  • F. Hinterberger
    • 1
  • L. Jentjens
    • 1
  • W. Mader
    • 2
  • N. L. Raeth
    • 1
  • H. Schmid
    • 2
  • M.-R. Zamani-Meymian
    • 1
  • K. Maier
    • 1
  1. 1.Helmholtz-Institut für Strahlen- und KernphysikUniversität BonnBonnGermany
  2. 2.Institut für Anorganische ChemieUniversität BonnBonnGermany

Personalised recommendations