Applied Physics B

, Volume 105, Issue 3, pp 631–639 | Cite as

Experimental and Monte Carlo investigation of visible diffuse-reflectance imaging sensitivity to diffusing particle size changes in an optical model of a bladder wall

  • N. Kalyagina
  • V. Loschenov
  • D. Wolf
  • C. Daul
  • W. Blondel
  • T. Savelieva
Article

Abstract

We have investigated the influence of scatterer size changes on the laser light diffusion, induced by collimated monochromatic laser irradiation, in tissue-like optical phantoms using diffuse-reflectance imaging. For that purpose, three-layer optical phantoms were prepared, in which nano- and microsphere size varied in order to simulate the scattering properties of healthy and cancerous urinary bladder walls. The informative areas of the surface diffuse-reflected light distributions were about 15×18 pixels for the smallest scattering particles of 0.05 μm, about 21×25 pixels for the medium-size particles of 0.53 μm, and about 25×30 pixels for the largest particles of 5.09 μm. The computation of the laser spot areas provided useful information for the analysis of the light distribution with high measurement accuracy of up to 92%. The minimal stability of 78% accuracy was observed for superficial scattering signals on the phantoms with the largest particles. The experimental results showed a good agreement with the results obtained by the Monte Carlo simulations. The presented method shows a good potential to be useful for a tissue-state diagnosis of the urinary bladder.

Keywords

Monte Carlo Intralipid Light Distribution Anisotropy Factor White Light Cystoscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Backman, M. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Müller, Q. Zhang, G. Zonios, E. Kline, J. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. Crawford, M. Fitzmaurice, S. Kabani, H. Levin, M. Seiler, R. Dasari, I. Itzkan, J. Van Dam, M. Feld, Nature 406 (2000) Google Scholar
  2. 2.
    V. Tuchin, Optical Biomedical Diagnostics, vol. 2 (Fizmatlit, Moscow, 2007) Google Scholar
  3. 3.
    R. Gurjar, V. Backman, L. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. Dasari, M. Feld, Nat. Med. 7, 11 (2001) CrossRefGoogle Scholar
  4. 4.
    V. Backman, Imaging human epithelial properties with polarized light scattering spectroscopy. Ph.D. thesis (2001) Google Scholar
  5. 5.
    N. Nese, R. Gupta, M. Bui, M. Amin, J. Natl. Compr. Cancer Netw. 7, 1 (2009) Google Scholar
  6. 6.
    M. Babjuk, Eur. Urol. Suppl. 8 (2009) Google Scholar
  7. 7.
    T. Kakizoi, Cancer Sci. 97, 9 (2006) Google Scholar
  8. 8.
    B. Tetu, Mod. Pathol. 22 (2009) Google Scholar
  9. 9.
    M. Ihnat, K. Kyker, J. Thorpe, S. Shenoy, R. Hurst, Am. J. Pharmacol. Toxicol. 1, 4 (2006) Google Scholar
  10. 10.
    T. Filbeck, U. Pichlmeier, R. Knuechel, W. Wieland, W. Roessler, Urology 60, 6 (2002) CrossRefGoogle Scholar
  11. 11.
    D. Barocas, P. Clark, Curr. Opin. Oncol. 20, 3 (2008) CrossRefGoogle Scholar
  12. 12.
    E. Cauberg, D. de Bruin, D. Faber, T. van Leeuwen, J. de la Rosette, T. de Reijke, Eur. Urol. 56 (2009) Google Scholar
  13. 13.
    A. Stenzl, S. Kruck, Expert Rev. Anticancer Ther. 9, 6 (2009) CrossRefGoogle Scholar
  14. 14.
    C. Bohren, D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1998) CrossRefGoogle Scholar
  15. 15.
    R. Studinski, I. Vitkin, J. Biomed. Opt. 3, 5 (2000) Google Scholar
  16. 16.
    J. Gladstone, T. Dale, Philos. Trans. R. Soc. Lond. 153 (1864) Google Scholar
  17. 17.
    Bang Laboratories, TechNote 100 (Polymer Microspheres) (2010) Google Scholar
  18. 18.
    A. Bashkatov, E. Genina, V. Kochubey, V. Tuchin, Proc. SPIE 3917 (2000) Google Scholar
  19. 19.
    H. Ding, J. Lu, K. Jacobs, X.-H. Hu, J. Opt. Soc. Am. A 22, 6 (2005) CrossRefGoogle Scholar
  20. 20.
    E. Hecht, Optics, 4th edn. (Addison-Wesley, Reading, 2002) Google Scholar
  21. 21.
    H. van Staverent, J. Beeu, J. Ramaekerst, M. Keijzerg, W. Star, Phys. Med. Biol. 39 (1994) Google Scholar
  22. 22.
    T. Beck, W. Beyer, T. Pongratz, W. Stummer, R. Waidelich, H. Stepp, S. Wagner, R. Baumgartner, in Proc. SPIE–OSA Biomedical Optics, vol. 5138 (SPIE, Bellingham, 2003) Google Scholar
  23. 23.
    L. Wang, S. Jacques, L. Zheng, Comput. Methods Biomed. 47 (1995) Google Scholar
  24. 24.
    C. Palmer, N. Ramanujam, Appl. Opt. 5, 45 (2006) Google Scholar
  25. 25.
    Z. Matuszak, A. Sawow, M. Wasilewska-Radwanska, Pol. J. Med. Phys. Eng. 4, 10 (2004) Google Scholar
  26. 26.
    M. Quinten, J. Stier, Colloid Polym. Sci. 272 (1995) Google Scholar
  27. 27.
    H. Kang, J. Kim, Y. Yu, J. Oh, J. Korean Phys. Soc. 55, 5 (2009) ADSCrossRefGoogle Scholar
  28. 28.
    C. Amra, Appl. Opt. 32, 28 (1993) Google Scholar
  29. 29.
    T. Lehmann, C. Gonner, K. Spitzer, IEEE Trans. Med. Imaging 18, 11 (1999) CrossRefGoogle Scholar
  30. 30.
    M. Póth, T. Szakáll, in 10th Int. Symp. Hungarian Researchers on Computational Intelligence and Informatics (2009) Google Scholar
  31. 31.
    E. Maeland, IEEE Trans. Med. Imag. 7 (1988) Google Scholar
  32. 32.
    R. Jones, I. Svable, IEEE Trans. Pattern Anal. Mach. Intell. 16, 6 (1994) Google Scholar
  33. 33.
    L. Shapiro, G. Stockman, Computer Vision (Prentice-Hall, Upper Saddle River, 2001) Google Scholar
  34. 34.
    V. Gmurman, I. Berenblut, Fundamentals of Probability Theory and Mathematical Statistics (Elsevier, New York, 1968) Google Scholar
  35. 35.
    R. Fisher, Statistical Methods for Research Workers, 1st edn. (Oliver & Boyd, Edinburgh, 1925) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • N. Kalyagina
    • 1
    • 2
  • V. Loschenov
    • 1
  • D. Wolf
    • 2
  • C. Daul
    • 2
  • W. Blondel
    • 2
  • T. Savelieva
    • 1
  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Centre de Recherche en Automatique de Nancy (CRAN UMR 7039)Nancy University, CNRSVandœuve-Les-NancyFrance

Personalised recommendations