Applied Physics B

, Volume 106, Issue 2, pp 483–489 | Cite as

A QEPAS based methane sensor with a 2.35 μm antimonide laser



A methane sensor based on quartz-enhanced photoacoustic spectroscopy was developed. An antimonide quantum-well diode laser was used as an excitation source. The GaInAsSb/AlGaAsSb laser was fabricated by molecular beam epitaxy on GaSb substrate. This diode laser emits in the 2.35 μm range at room temperature in the continuous wave regime. A spectrophone constituted of a quartz tuning fork and two steel microresonators was used. The analysis of the sensor response with one, two or without microresonators is presented. Second derivative wavelength modulation detection was used to perform low concentrations measurements, thus we obtained a CH4 detection limit of 1 ppmv.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.A. Kostrerev, Y.A. Bakhirkin, R.F. Curl, F.K. Tittel, Opt. Lett. 27, 1902 (2002) ADSCrossRefGoogle Scholar
  2. 2.
    A. Vicet, D.A. Yarekha, A. Perona, Y. Rouillard, S. Gaillard, A.N. Baranov, Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc. 58a(11), 2405 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    D. Barat, J. Angellier, A. Vicet, Y. Rouillard, L. Le Gratiet, S. Guilet, A. Martinez, A. Ramdane, Appl. Phys. B 90, 201 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    V. Zeninari, A. Vicet, B. Parvitte, L. Joly, G. Durry, Infrared Phys. Technol. 45, 229 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    S. Schilt, A. Vicet, R. Werner, M. Mattiello, L. Thévenaz, A. Salhi, Y. Rouillard, J. Koeth, Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc. 60, 3431 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    L. Dong, A.A. Kostrerev, D. Thomazy, F.K. Tittel, Appl. Phys. B (2010). doi:10.1007/s00340-010-4072-0 Google Scholar
  7. 7.
    A.A. Kostrerev, F.K. Tittel, Appl. Opt. 43, 6213 (2004) ADSCrossRefGoogle Scholar
  8. 8.
    M. Horstjann, Y.A. Bakhirkin, A.A. Kostrerev, R.F. Curl, F.K. Tittel, C.M. Wong, C.J. Hill, R.Q. Yang, Appl. Phys. B 79, 799 (2004) ADSCrossRefGoogle Scholar
  9. 9.
    A.A. Kostrerev, F.K. Tittel, D.V. Serebryakov, A.L. Malinovsky, I.V. Morozov, Rev. Sci. Instrum. 76, 043105 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    A.A. Kostrerev, Y.A. Bakhirkin, F.K. Tittel, Appl. Phys. B 80, 133 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    R. Lewicki, G. Wysocki, A.A. Kostrerev, F.K. Tittel, Appl. Phys. B 87, 157 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    K. Liu, J. Li, L. Wang, T. Tan, W. Zhang, X. Gao, W. Chen, F.K. Tittel, Appl. Phys. B 94, 527 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    A.A. Kosterev, Y.A. Bakhirkin, F.K. Tittel, S. Mcwhorter, B. Ashcraft, Appl. Phys. B 92, 103 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    F.K. Tittel, G. Wysocki, A. Kosterev, Y. Bakhirkin, Mid-infrared Coherent Sources and Applications (Springer, Berlin, 2008) pp. 467–493 CrossRefGoogle Scholar
  15. 15.
    A.A. Kosterev, L. Dong, D. Thomazy, F.K. Tittel, S. Overby, Appl. Phys. B 101, 649 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    S. Moumdji, A. Larrue, D. Belharet, P. Dubreuil, S. Bonnefont, O. Gauthier-Lafaye, Y. Rouillard, A. Vicet, Electron. Lett. 45(22) (2009) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.IES, UMR CNRS 5214, CC067Université Montpellier 2Montpellier Cedex 05France

Personalised recommendations