Applied Physics B

, Volume 106, Issue 2, pp 315–319 | Cite as

Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm

  • S. Lamrini
  • P. Koopmann
  • M. Schäfer
  • K. Scholle
  • P. Fuhrberg
Article

Abstract

An efficient high-power Ho:YAG laser directly in-band pumped by a recently developed GaSb-based laser diode stack at 1.9 μm is demonstrated. At room temperature a maximum continuous wave output power of 55 W at 2.122 μm and a slope efficiency of 62% with respect to the incident pump power were achieved. For narrow linewidth laser operation a volume Bragg grating was used as output coupler. In wavelength stabilized operation a maximum output power of 18 W at 2.096 μm and a slope efficiency of 30% were obtained. In this case the linewidth is reduced from 1.2 nm to below 0.1 nm. Also spectroscopic properties of Ho:YAG crystals at room temperature are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Scholle, S. Lamrini, P. Koopmann, P. Fuhrberg, in Frontiers in Guided Wave Optics and Optoelectronics (INTECH, Vukovar, 2010), pp. 471–500 Google Scholar
  2. 2.
    M. Eichhorn, Appl. Phys. B 93, 269 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    E. Lippert, S. Nicolas, G. Arisholm, K. Stenersen, G. Rustad, Appl. Opt. 45, 3839 (2006) ADSCrossRefGoogle Scholar
  4. 4.
    P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, G. Huber, Opt. Lett. 36, 948 (2011) ADSCrossRefGoogle Scholar
  5. 5.
    P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, G. Huber, in Advanced Solid-State Photonics. OSA Technical Digest Series (Optical Society of America, Washington, 2011). Paper ATuA5 Google Scholar
  6. 6.
    D.Y. Shen, A. Abdolvand, L.J. Cooper, W.A. Clarkson, Appl. Phys. B 79, 559 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    X. Mu, H.E. Meissner, H. Lee, in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, Washington, 2009), Paper CWH1 Google Scholar
  8. 8.
    N.G. Zakharov, O.L. Antipov, V.V. Sharkov, A.P. Savikin, Quantum Electron. 40, 98 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    X. Mateos, V. Jambunathan, M.C. Pujol, J.J. Carvajal, F. Díaz, M. Aguiló, U. Griebner, V. Petrov, Opt. Express 18, 20793 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    C.D. Nabors, J. Ochoa, T.Y. Fan, A. Sanchez, H.K. Choi, G.W. Turner, IEEE J. Quantum Electron. 31, 1603 (1995) ADSCrossRefGoogle Scholar
  11. 11.
    N.P. Barnes, F. Amzajerdian, D.J. Reichle, W.A. Carrion, G.E. Busch, P. Leisher, Appl. Phys. B 103, 57 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    K. Scholle, P. Fuhrberg, in Conference on Lasers and Electro-Optics OSA Technical Digest (Optical Society of America, Washington, 2008), Paper CTuAA1 Google Scholar
  13. 13.
    S. Lamrini, P. Koopmann, K. Scholle, P. Fuhrberg, M. Hofmann, in Advanced Solid-State Photonics OSA Technical Digest Series (Optical Society of America, Washington, 2010), Paper AMB13 Google Scholar
  14. 14.
    D.E. McCumber, Phys. Rev. 136, A954 (1964) ADSCrossRefGoogle Scholar
  15. 15.
    S.A. Payne, L.L. Chase, L.K. Smith, W.L. Kway, W.F. Krupke, IEEE J. Quantum Electron. 28, 2619 (1992) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • S. Lamrini
    • 1
    • 2
  • P. Koopmann
    • 1
    • 3
  • M. Schäfer
    • 1
  • K. Scholle
    • 1
  • P. Fuhrberg
    • 1
  1. 1.LISA Laser Products OHGKatlenburg-LindauGermany
  2. 2.Photonics and Terahertz-TechnologyRuhr-University BochumBochumGermany
  3. 3.Institute of Laser-PhysicsUniversity of HamburgHamburgGermany

Personalised recommendations