Applied Physics B

, Volume 106, Issue 2, pp 457–471 | Cite as

Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering

  • R. A. Patton
  • K. N. Gabet
  • N. Jiang
  • W. R. Lempert
  • J. A. Sutton
Article

Abstract

In this study, we describe the development of two-dimensional, high repetition-rate (10-kHz) Rayleigh scattering imaging as applied to turbulent flows. In particular, we report what we believe to be the first sets of high-speed 2D Rayleigh scattering images in turbulent non-reacting jets, yielding temporally correlated image sequences of the instantaneous mixture fraction field. Results are presented for turbulent jets of propane issuing into a low-speed co-flow of air at jet-exit Reynolds numbers of 10,000, 15,000, and 30,000 at various axial positions downstream of the jet exit. The quantitative high-speed mixture fraction measurements are facilitated by the use of a calibrated, un-intensified, high-resolution CMOS camera in conjunction with a unique high-energy, high-repetition rate pulse-burst laser system (PBLS) at Ohio State, which yields output energies of ∼200 mJ/pulse at 532 nm with 100-μs laser pulse spacing. The quality, accuracy, and resolution of the imaging system and the resulting image sets are assessed by (1) comparing the mean mixture fraction results to known scaling laws for turbulent jets, (2) comparing instantaneous images/mixture fraction profiles acquired simultaneously with the high-speed CMOS camera and a well-characterized, high-quantum efficiency CCD camera, and (3) comparing statistical quantities such as the probability density function of the mixture fraction results using the high-speed CMOS camera and the CCD camera. Results indicate accurate mixture fraction measurements and a high potential for accurately measuring mixture fraction gradients in both time and space.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Peters, Prog. Energy Combust. Sci. 10, 319 (1984) CrossRefGoogle Scholar
  2. 2.
    N. Peters, Proc. Combust. Inst. 21, 1231 (1986) ADSGoogle Scholar
  3. 3.
    M. Namazian, R.W. Schefer, J. Kelly, Combust. Flame 74, 147 (1988) CrossRefGoogle Scholar
  4. 4.
    R.R. Prasad, K.R. Sreenivasan, J. Fluid Mech. 216, 1 (1990) ADSCrossRefGoogle Scholar
  5. 5.
    W.J.A. Dahm, K.B. Southerland, K.A. Buch, Phys. Fluids A, Fluid Dyn. 3, 1385 (1991) ADSCrossRefGoogle Scholar
  6. 6.
    K.A. Buch, W.J.A. Dahm, J. Fluid Mech. 317, 21 (1996) ADSCrossRefGoogle Scholar
  7. 7.
    K.A. Buch, W.J.A. Dahm, J. Fluid Mech. 364, 1 (1998) ADSMATHCrossRefGoogle Scholar
  8. 8.
    D.A. Everest, D.A. Feikema, J.F. Driscoll, Proc. Combust. Inst. 26, 129 (1996) Google Scholar
  9. 9.
    D.A. Feikema, D.A. Everest, J.F. Driscoll, AIAA J. 34, 2531 (1996) ADSCrossRefGoogle Scholar
  10. 10.
    L.K. Su, N.T. Clemens, Exp. Fluids 27, 507 (1999) CrossRefGoogle Scholar
  11. 11.
    L.K. Su, N.T. Clemens, J. Fluid Mech. 488, 1 (2003) ADSMATHCrossRefGoogle Scholar
  12. 12.
    J.H. Frank, S.A. Kaiser, Exp. Fluids 49, 823 (2007) CrossRefGoogle Scholar
  13. 13.
    J.B. Kelman, A.R. Masri, S.H. Starner, R.W. Bilger, Proc. Combust. Inst. 25, 1141 (1994) Google Scholar
  14. 14.
    A.N. Karpetis, R.S. Barlow, Proc. Combust. Inst. 29, 1929 (2002) CrossRefGoogle Scholar
  15. 15.
    J.H. Frank, S.A. Kaiser, M.B. Long, Proc. Combust. Inst. 29, 2687 (2002) CrossRefGoogle Scholar
  16. 16.
    J.H. Frank, S.A. Kaiser, M.B. Long, Combust. Flame 143, 507 (2005) CrossRefGoogle Scholar
  17. 17.
    D. Geyer, A. Kempf, A. Dreizler, J. Janicka, Proc. Combust. Inst. 30, 681 (2005) CrossRefGoogle Scholar
  18. 18.
    G. Wang, A.N. Karpetis, R.S. Barlow, Combust. Flame 148, 62 (2007) CrossRefGoogle Scholar
  19. 19.
    L. Wehr, W. Meier, P. Kutne, C. Hassa, Proc. Combust. Inst. 31, 3099 (2007) CrossRefGoogle Scholar
  20. 20.
    B.S. Thurow, N. Jiang, M. Samimy, W.R. Lempert, Appl. Opt. 43, 5064 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    J.D. Miller, M. Slipchenko, T.R. Meyer, N. Jiang, W.R. Lempert, J.R. Gord, Opt. Lett. 34, 1309 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    N. Jiang, M. Webster, W.R. Lempert, Appl. Opt. 48, B23 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    K.N. Gabet, N. Jiang, W.R. Lempert, J.A. Sutton, Appl. Phys. B 101, 1 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    N. Jiang, R.A. Patton, W.R. Lempert, J.A. Sutton, Proc. Combust. Inst. 33, 767 (2011) CrossRefGoogle Scholar
  25. 25.
    A. Upatnieks, K. Laberteaux, S.L. Ceccio, Exp. Fluids 32, 87 (2002) CrossRefGoogle Scholar
  26. 26.
    C.M. Fajardo, V. Sick, Proc. Combust. Inst. 31, 3023 (2007) CrossRefGoogle Scholar
  27. 27.
    A.M. Steinberg, J.F. Driscoll, S.L. Ceccio, Exp. Fluids 44, 985 (2008) CrossRefGoogle Scholar
  28. 28.
    B. Bohm, C. Heeger, W. Meier, A. Dreizler, Proc. Combust. Inst. 32, 1647 (2009) CrossRefGoogle Scholar
  29. 29.
    A.M. Steinberg, J.F. Driscoll, S.L. Ceccio, Exp. Fluids 47, 527 (2009) CrossRefGoogle Scholar
  30. 30.
    M. Stohr, I. Boxx, C.D. Carter, W. Meier, Proc. Combust. Inst. 33, 2953 (2011) CrossRefGoogle Scholar
  31. 31.
    A.M. Steinberg, I. Boxx, C.M. Arndt, J.H. Frank, W. Meier, Proc. Combust. Inst. 33, 1663 (2011) CrossRefGoogle Scholar
  32. 32.
    C. Kittler, A. Dreizler, Appl. Phys. B 89, 163 (2007) ADSCrossRefGoogle Scholar
  33. 33.
    I. Boxx, C. Heeger, R. Gordon, B. Bohm, A. Dreizler, W. Meier, Combust. Flame 156, 269 (2009) CrossRefGoogle Scholar
  34. 34.
    I. Boxx, M. Stohr, C.D. Carter, W. Meier, Appl. Phys. B 95, 23 (2009) ADSCrossRefGoogle Scholar
  35. 35.
    M. Stohr, I. Boxx, C.D. Carter, W. Meier, Proc. Combust. Inst. 33, 2953 (2011) CrossRefGoogle Scholar
  36. 36.
    W. Paa, W. Muller, M. Stafast, W. Triebel, Appl. Phys. B 86, 1 (2007) ADSCrossRefGoogle Scholar
  37. 37.
    M.E. Cundy, V. Sick, Appl. Phys. B 96, 241 (2009) ADSCrossRefGoogle Scholar
  38. 38.
    J.D. Smith, V. Sick, Appl. Phys. B 81, 579 (2005) ADSCrossRefGoogle Scholar
  39. 39.
    C.M. Fajardo, J.D. Smith, V. Sick, Appl. Phys. B 85, 25 (2006) ADSCrossRefGoogle Scholar
  40. 40.
    M. Cundy, T. Schucht, O. Thiele, V. Sick, Appl. Opt. 48, B94 (2009) ADSCrossRefGoogle Scholar
  41. 41.
    R.L. Gordon, C. Heeger, A. Dreizler, Appl. Phys. B 96, 745 (2009) ADSCrossRefGoogle Scholar
  42. 42.
    B. Bork, B. Bohm, C. Heeger, S.R. Chakravarthy, A. Dreizler, Appl. Phys. B 101, 487 (2010) ADSCrossRefGoogle Scholar
  43. 43.
    R.W. Dibble, M.B. Long, Combust. Flame 143, 644 (2005) CrossRefGoogle Scholar
  44. 44.
    P. Wu, W.R. Lempert, R.B. Miles, AIAA J. 38, 672 (2000) ADSCrossRefGoogle Scholar
  45. 45.
    N. Jiang, M. Webster, W.R. Lempert, J.D. Miller, T.R. Meyer, C.B. Ivey, P.M. Danehy, Appl. Opt. 50, A20 (2011) ADSCrossRefGoogle Scholar
  46. 46.
    S.E. Bohndiek, A. Blue, A.T. Clar, M.L. Prydderch, R. Turchetta, G.J. Royle, R.D. Speller, IEEE Sens. J. 8, 1734 (2008) CrossRefGoogle Scholar
  47. 47.
    R. Hain, C.J. Kahler, C. Tropea, Exp. Fluids 42, 403 (2007) CrossRefGoogle Scholar
  48. 48.
    V. Weber, J. Brubach, R.L. Gordon, A. Dreizler, Appl. Phys. B (2011). doi:10.1007/s00340-011-4443-1 Google Scholar
  49. 49.
    G.K. Batchelor, J. Fluid Mech. 5, 113 (1959) MathSciNetADSMATHCrossRefGoogle Scholar
  50. 50.
    G. Taylor, Proc. R. Soc. Lond. 151, 421 (1935) ADSMATHCrossRefGoogle Scholar
  51. 51.
    R.A. Antonia, B.R. Satyaprakash, F. Hussain, Phys. Fluids 23, 695 (1980) ADSCrossRefGoogle Scholar
  52. 52.
    J. Mi, G.J. Nathan, Exp. Fluids 34, 687 (2003) CrossRefGoogle Scholar
  53. 53.
    K.M. Tacina, W.J.A. Dahm, J. Fluid Mech. 415, 23 (2000) MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • R. A. Patton
    • 1
  • K. N. Gabet
    • 1
  • N. Jiang
    • 1
  • W. R. Lempert
    • 1
  • J. A. Sutton
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations