Applied Physics B

, 104:481

Fiber waveguide arrays as model system for discrete optics

  • U. Röpke
  • H. Bartelt
  • S. Unger
  • K. Schuster
  • J. Kobelke
Article

Abstract

Optical waveguide arrays consisting of a two-dimensional arrangement of weakly coupled waveguides represent the basis of the new research field of discrete optics. For studying the nonlinear pulse dynamics, fiber waveguide arrays offer specific advantages such as a high optical damage threshold and an accessible range of anomalous dispersion. Coherent coupling of such waveguides for reasonable propagation lengths requires, however, a high structural quality of the waveguides and their superstructure, which is beyond conventional fiber technology. Design, fabrication and characterization of such a fiber waveguide array are described. The linear propagation properties in such a system are modeled and compared with experimental measurements. The high structural homogeneity and good optical quality of the arrays as well as the limits of the nearest-neighbor approximation are demonstrated.

References

  1. 1.
    U. Röpke, H. Bartelt, S. Unger, K. Schuster, J. Kobelke, Opt. Express 15, 6894 (2007) ADSCrossRefGoogle Scholar
  2. 2.
    E. Suran, F. Louradour, A. Barthélémy, A. Kudlinski, G. Martinelli, Y. Quiquempois, M. Douay, Opt. Lett. 34, 2536 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    A. Szameit, T. Pertsch, F. Dreisow, S. Nolte, A. Tünnermann, U. Peschel, F. Lederer, Phys. Rev. A 75, 053814 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    A. Szameit, I.L. Garanovich, M. Heinrich, A.A. Sukhorukov, F. Dreisow, T. Pertsch, S. Nolte, A. Tunnermann, S. Longhi, Yu.S. Kivshar, Phys. Rev. Lett. 104, 223903 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    J. Fleischer, G. Bartal, O. Cohen, T. Schwartz, O. Manela, B. Freedman, M. Segev, H. Buljan, N. Efremidis, Opt. Express 13, 1780 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    N. Efremidis, S. Sears, D. Christodoulides, J. Fleischer, M. Segev, Phys. Rev. E 66, 046602 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    S. Nolte, M. Will, J. Burghoff, A. Tuennermann, Appl. Phys. A, Mater. Sci. Process. 77, 109 (2003) ADSCrossRefGoogle Scholar
  8. 8.
    A. Szameit, D. Bloemer, J. Burghoff, T. Pertsch, S. Nolte, F. Lederer, A. Tuennermann, Appl. Phys. B 82, 507 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tunnermann, F. Lederer, Phys. Rev. Lett. 93, 053901 (2004) ADSCrossRefGoogle Scholar
  10. 10.
    T. Pertsch, A. Chipouline, S. Nolte, F. Lederer, U. Röpke, J. Kobelke, K. Schuster, H. Bartelt, U. Peschel, A. Tünnermann, in Photonic Metamaterials: From Random to Periodic (Optical Society of America, Washington, 2006), paper WA7, Google Scholar
  11. 11.
    Y. Silberberg, Opt. Lett. 15, 1282 (1990) ADSCrossRefGoogle Scholar
  12. 12.
    S. Minardi, F. Eilenberger, Y.V. Kartashov, A. Szameit, U. Röpke, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, L. Torner, F. Lederer, A. Tünnermann, T. Pertsch, Phys. Rev. Lett. 105, 263901 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    A.W. Snyder, J.D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983) p. 387 et seqq, p. 567 et seqq Google Scholar
  14. 14.
    M.L. Cooper, S. Mookherjea, Opt. Express 17, 1583 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    C. Minot, N. Belabas, J.A. Levenson, J.-M. Moison, Opt. Express 18, 7157 (2010) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • U. Röpke
    • 1
  • H. Bartelt
    • 1
  • S. Unger
    • 1
  • K. Schuster
    • 1
  • J. Kobelke
    • 1
  1. 1.Institute of Photonic TechnologyJenaGermany

Personalised recommendations