Applied Physics B

, Volume 106, Issue 1, pp 73–79 | Cite as

Lifetime measurements with the pinhole method in presence of radiation trapping: II—application to Yb3+ doped ceramics and crystals

Article

Abstract

In this paper, we present an experimental verification of a theoretical model for the evaluation of the results of the so-called pinhole method for the measurement of the upper level lifetime in doped optical materials where the resonant reabsorption of the emitted fluorescence determines significant radiation trapping effects. As an experimental verification of the model, we measured the lifetime of the upper laser level of Yb3+ in various crystals and ceramic samples usually employed for the realization of solid state laser sources.

We verified that the previously reported model correctly predicts the intrinsic double exponential behavior of the fluorescence decay and also accounts for the effect of the short range reabsorption occurring with this specific measurement technique.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.F. Aull, H.P. Jenssen, IEEE J. Quantum Electron. 18, 925 (1982) ADSCrossRefGoogle Scholar
  2. 2.
    M. Vannini, G. Toci, D. Alderighi, D. Parisi, F. Cornacchia, M. Tonelli, Opt. Express 15, 7994 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    A. Pirri, G. Toci, D. Alderighi, M. Vannini, Opt. Express 18, 17262 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    D. Alderighi, A. Pirri, G. Toci, M. Vannini, Opt. Express 18, 2236 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    G. Toci, Appl. Phys. B (2011). doi: 10.1007/s00340-011-4631-z
  6. 6.
    H. Kühn, S.T. Fredrich-Thornton, K. Krankel, R. Peters, K. Petermann, Opt. Lett. 32, 1908 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J.J. Romero, S. Kutuvoi, J. Speiser, A. Giesen, J. Cryst. Growth 275, 135 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    D. Fagundes-Peters, N. Martynyuk, K. Lunstedt, V. Peters, K. Petermann, G. Huber, S. Basun, V. Laguta, A. Hofstaetter, J. Lumin. 125, 238 (2007) CrossRefGoogle Scholar
  9. 9.
    A. Pirri, D. Alderighi, G. Toci, M. Vannini, M. Nikl, H. Sato, Opt. Express 17, 18312 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    A. Pirri, D. Alderighi, G. Toci, M. Vannini, Opt. Express 17, 23344 (2009) CrossRefGoogle Scholar
  11. 11.
    W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes (Cambridge University Press, Cambridge, 1989) MATHGoogle Scholar
  12. 12.
    S. Chenais, F. Druon, S. Forget, F. Balembois, P. Georges, Prog. Quantum Electron. 30, 89 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, G. Boulon, J. Phys., Condens. Matter 16, 1501 (2004) ADSCrossRefGoogle Scholar
  14. 14.
    H.W. Bruesselbach, D.S. Sumida, R.A. Reeder, R.W. Byren, IEEE J. Sel. Top. Quantum Electron. 3, 105 (1997) CrossRefGoogle Scholar
  15. 15.
    A.F. Molisch, G.J. Parker, B.P. Oehry, W. Schupita, G. Magerl, J. Quant. Spectrosc. Radiat. Transf. 53, 269 (1995) ADSGoogle Scholar
  16. 16.
    A. Stoita, T. Vautey, B. Jacquier, S. Guy, J. Lumin. 130, 1119 (2010) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.CNR—National Research Council of Italy, Istituto di Fisica Applicata “Carrara”IFAC-CNRSesto FiorentinoItaly

Personalised recommendations