Applied Physics B

, 104:755 | Cite as

All-optical ion generation for ion trap loading

  • K. SheridanEmail author
  • W. Lange
  • M. Keller


We have investigated the all-optical generation of ions by photo-ionisation of atoms generated by pulsed laser ablation. A direct comparison between a resistively heated oven source and pulsed laser ablation is reported. Pulsed laser ablation with 10 ns Nd:YAG laser pulses is shown to produce large calcium flux, corresponding to atomic beams produced with oven temperatures greater than 650 K. For an equivalent atomic flux, pulsed laser ablation is shown to produce a thermal load more than one order of magnitude smaller than the oven source. The atomic beam distributions obey Maxwell–Boltzmann statistics with most probable speeds corresponding to temperatures greater than 2200 K. Below a threshold pulse fluence between 280 mJ/cm2 and 330 mJ/cm2, the atomic beam is composed exclusively of ground-state atoms. For higher fluences ions and excited atoms are generated.


Ablation Laser Atomic Beam Pulse Laser Ablation Trap Depth Calcium Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Rev. Mod. Phys. 75, 281 (2003) ADSCrossRefGoogle Scholar
  2. 2.
    H. Häffner, W. Hänsel, C.F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T. Körber, U.D. Rapol, M. Riebe, P.O. Schmidt, C. Becher, O. Gühne, W. Dür, R. Blatt, Nature 438, 643 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    D. Leibfried, E. Knill, S. Seidelin, J. Britton, R.B. Blakestad, J. Chiaverini, D.B. Hume, W.M. Itano, J.D. Jost, C. Langer, R. Ozeri, R. Reichle, D.J. Wineland, Nature 438, 639 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    T. Schneider, E. Peik, C. Tamm, Phys. Rev. Lett. 94, 230801 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    S.A. Diddams, Th. Udem, K.R. Vogel, C.W. Oates, E.A. Curtis, W.D. Lee, W.M. Itano, R.E. Drullinger, J.C. Bergquist, L. Hollberg, Science 293, 825 (2001) ADSCrossRefGoogle Scholar
  6. 6.
    T. Rosenband, P.O. Schmidt, D.B. Hume, W.M. Itano, T.M. Fortier, J.E. Stalnaker, K. Kim, S.A. Diddams, J.C.J. Koelemeij, J.C. Bergquist, D.J. Wineland, Phys. Rev. Lett. 98, 220801 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    H. Schmitz, R. Matjeschk, Ch. Schneider, J. Glückert, M. Enderlein, T. Huber, T. Schätz, Phys. Rev. Lett. 103, 090504 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, C.F. Roos, Nature 463, 68 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    A. Steane, Appl. Phys. B, Lasers Opt. 64, 623 (1997) ADSCrossRefGoogle Scholar
  10. 10.
    D. Kielpinski, C. Monroe, C. Wineland, Nature 417, 709 (2002) ADSCrossRefGoogle Scholar
  11. 11.
    D. Stick, W.K. Hensinger, S. Olmschenk, M.J. Madsen, K. Schwab, C. Monroe, Nat. Phys. 2, 36 (2006) CrossRefGoogle Scholar
  12. 12.
    M. Brownnutt, G. Wilpers, R.C. Thompson, A.G. Sinclair, New J. Phys. 8, 232 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    M. Keller, B. Lange, K. Hayasaka, W. Lange, H. Walther, J. Mod. Opt. 54, 1607 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    M. Keller, B. Lange, K. Hayasaka, W. Lange, H. Walther, New J. Phys. 6, 95 (2004) ADSCrossRefGoogle Scholar
  15. 15.
    C. Russo, H.G. Barros, A. Stute, F. Dubin, E.S. Phillips, T. Monz, T.E. Northup, C. Becher, T. Salzburger, H. Ritsch, P.O. Schmidt, R. Blatt, Appl. Phys. B 95, 205 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    R.G. DeVoe, C. Kurtsiefer, Phys. Rev. A 65, 063407 (2002) ADSCrossRefGoogle Scholar
  17. 17.
    N. Daniilidis, S. Narayanan, S.A. Möller, R. Clark, T.E. Lee, P.J. Leek, A. Wallraff, St. Schulz, F. Schmidt-Kaler, H. Häffner, New J. Phys. 13, 013032 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    D.M. Lucas, A. Ramos, J.P. Home, M.J. McDonnell, S. Nakayama, J.-P. Stacey, S.C. Webster, D.N. Stacey, A.M. Steane, Phys. Rev. A 69, 012711 (2004) ADSCrossRefGoogle Scholar
  19. 19.
    N. Kjærgaard, L. Hornekær, A.M. Thommesen, Z. Videsen, M. Drewsen, Appl. Phys. B 71, 207 (2000) ADSCrossRefGoogle Scholar
  20. 20.
    S. Gulde, D. Rotter, P. Barton, F. Schmidt-Kaler, R. Blatt, W. Hogervorst, Appl. Phys. B, Lasers Opt. 73, 861 (2001) ADSCrossRefGoogle Scholar
  21. 21.
    M. Ashfold, F. Claeyssens, G. Fuge, S. Henley, Chem. Soc. Rev. 33, 23 (2004) CrossRefGoogle Scholar
  22. 22.
    R.F. Haglund, Mechanisms of Laser-Induced Desorption and Ablation (Academic Press, San Diego, 1998) Google Scholar
  23. 23.
    R.J. Hendricks, D.M. Grant, P.F. Herskind, A. Dante, M. Drewson, Appl. Phys. B, Lasers Opt. 88, 507 (2007) ADSCrossRefGoogle Scholar
  24. 24.
    D.R. Leibrandt, R.J. Clark, J. Labaziewicz, P. Antohi, W. Bakr, K.R. Brown, I.L. Chuang, Phys. Rev. A 76, 055403 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    N.B. Pilling, Phys. Rev. 18, 362 (1921) ADSCrossRefGoogle Scholar
  26. 26.
    N.F. Ramsey, Molecular Beams (Oxford University Press, London, 1963) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of SussexFalmerEngland

Personalised recommendations