Applied Physics B

, 103:271 | Cite as

Simultaneous planar measurements of soot structure and velocity fields in a turbulent lifted jet flame at 3 kHz

  • M. Köhler
  • I. Boxx
  • K. P. Geigle
  • W. Meier
Rapid Communication


We describe a newly developed combustion diagnostic for the simultaneous planar imaging of soot structure and velocity fields in a highly sooting, lifted turbulent jet flame at 3000 frames per second, or two orders of magnitude faster than “conventional” laser imaging systems. This diagnostic uses short pulse duration (8 ns), frequency-doubled, diode-pumped solid state (DPSS) lasers to excite laser-induced incandescence (LII) at 3 kHz, which is then imaged onto a high framerate CMOS camera. A second (dual-cavity) DPSS laser and CMOS camera form the basis of a particle image velocity (PIV) system used to acquire 2-component velocity field in the flame. The LII response curve (measured in a laminar propane diffusion flame) is presented and the combined diagnostics then applied in a heavily sooting lifted turbulent jet flame. The potential challenges and rewards of application of this combined imaging technique at high speeds are discussed.


Laser Sheet Soot Particle Soot Formation CMOS Camera Soot Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.C. Eckbreth, J. Appl. Phys. 48, 4473 (1977) ADSCrossRefGoogle Scholar
  2. 2.
    L.A. Melton, Appl. Opt. 23, 2201 (1984) ADSCrossRefGoogle Scholar
  3. 3.
    C.R. Shaddix, K. Smyth, Combust. Flame 107, 418 (1996) CrossRefGoogle Scholar
  4. 4.
    S. Will, S. Schraml, A. Leipertz, Proc. Combust. Inst. 26, 2277 (1996) Google Scholar
  5. 5.
    J.E. Dec, A.O. zur Loye, D.L. Siebers, SAE Technical Paper 910224, 1991 Google Scholar
  6. 6.
    B. Bougie, L.C. Ganippa, A.P. van Vliet, W.L. Meerts, N.J. Dam, J.J. ter Meulen, Combust. Flame 145, 635 (2006) CrossRefGoogle Scholar
  7. 7.
    B.F. Kock, B. Tribalet, C. Schulz, P. Roth, Combust. Flame 147, 79 (2006) CrossRefGoogle Scholar
  8. 8.
    M. Braun-Unkhoff, A. Chrysostomou, P. Frank, E. Gutheil, R. Lückerath, W. Stricker, Proc. Combust. Inst. 27, 1565 (1998) Google Scholar
  9. 9.
    M. Hofmann, W.G. Bessler, C. Schulz, H. Jander, Appl. Opt. 42, 2052 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    O. Lammel, K.P. Geigle, R. Lückerath, W. Meier, M. Aigner, in Proc. ASME Turbo Expo 2007, Power for Land, Sea and Air, Montreal (Canada), 14.–17.05.2007 (2007). Paper GT2007-27902 Google Scholar
  11. 11.
    R. Snelling, G.J. Smallwood, R.A. Sawchuk, W.S. Neill, D. Gareau, D.J. Clavel, W.L. Chippior, F. Liu, Ö.L. Gülder, SAE Tech. Paper 2000–01–1994. Society of Automotive Engineers, Warrendale, PA, 2000 Google Scholar
  12. 12.
    J.D. Black, M.P. Johnson, Aerosp. Sci. Technol. 14, 329 (2010) CrossRefGoogle Scholar
  13. 13.
    R.J. Santoro, C.R. Shaddix, in Applied Combustion Diagnostics, ed. by K. Kohse-Höinghaus, J. Jeffries (Taylor and Francis, London, 2002) Google Scholar
  14. 14.
    C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    S.-Y. Lee, S.R. Turns, R.J. Santoro, Combust. Flame 156, 2264 (2009) CrossRefGoogle Scholar
  16. 16.
    Q.N. Chan, P.R. Medwell, P.A.M. Kalt, Z.T. Alwahabi, B.B. Dally, G.J. Nathan, Proc. Combust. Inst. 33, 791 (2011) CrossRefGoogle Scholar
  17. 17.
    C. Heeger, B. Böhm, S.F. Ahmed, R. Gordon, I. Boxx, W. Meier, A. Dreizler, E. Mastorakos, Proc. Combust. Inst. 32, 2957 (2009) CrossRefGoogle Scholar
  18. 18.
    I. Boxx, M. Stöhr, C. Carter, W. Meier, Appl. Phys. B 95, 23 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    A.M. Steinberg, I. Boxx, C. Arndt, J.H. Frank, W. Meier, Proc. Combust. Inst. 33, 1663 (2011) CrossRefGoogle Scholar
  20. 20.
    C.M. Fajardo, V. Sick, SAE Paper 2009-01-0651, 2009 Google Scholar
  21. 21.
    M. Stöhr, I. Boxx, C. Carter, W. Meier, Proc. Combust. Inst. 33, 2953 (2011) CrossRefGoogle Scholar
  22. 22.
    M. Köhler, K.P. Geigle, W. Meier, B.M. Crosland, K.A. Thomson, G.J. Smallwood, Appl. Phys. B, Lasers Opt. (2011). doi: 10.1007/s00340-011-4373-y zbMATHGoogle Scholar
  23. 23.
    V. Weber, J. Brübach, R.L. Gordon, A. Dreizler, Appl. Phys. B Rev. (2010) Google Scholar
  24. 24.
    P.O. Witze, S. Hochgreb, D. Kayes, H.A. Michelsen, C.R. Shaddix, Appl. Opt. 40, 2443 (2001) ADSCrossRefGoogle Scholar
  25. 25.
    H. Bladh, P.E. Bengtsson, Appl. Phys. B 78, 241 (2004) ADSCrossRefGoogle Scholar
  26. 26.
    R.L. Vander Wal, T.M. Ticich, A.B. Stephens, Appl. Phys. B 67, 115 (1998) ADSCrossRefGoogle Scholar
  27. 27.
    K. Thomson, K.P. Geigle, M. Köhler, G.J. Smallwood, D.R. Snelling, Appl. Phys. B (2011). doi: 10.1007/s00340-011-4449-8 zbMATHGoogle Scholar
  28. 28.
    M.E. Decroix, W.L. Roberts, Combust. Sci. Technol. 160, 165 (2000) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institut für VerbrennungstechnikDeutsches Zentrum für Luft-und Raumfahrt (DLR)StuttgartGermany

Personalised recommendations