Applied Physics B

, Volume 104, Issue 2, pp 357–366 | Cite as

Investigation on thermal accommodation coefficient and soot absorption function with two-color Tire-LII technique in rich premixed flames

Article

Abstract

Although the two-color laser-induced incandescence technique (2C-LII) has proved to be a significant tool for soot diagnostics, many efforts are still required to gain a whole understanding of the chemical and physical processes involved.

Time-resolved two-color LII measurements are carried out in a rich ethylene/air premixed flame at different heights above the burner and by changing the laser fluence. The prompt LII at two wavelengths and the corresponding soot incandescence temperature are obtained at different stages of the soot growth and under different laser irradiations. The decay rate of the LII signals, as a method for soot sizing, is investigated at different laser fluence. The time-resolved LII curves, obtained in the low laser fluence regime, are analyzed by a numerical simulation, available on the web. By considering the gas/particle initial temperature obtained with thermocouple measurements and by knowing soot particle diameter with previous TEM and extinction/scattering measurements, information about soot parameters, such as absorption function and thermal accommodation coefficient are obtained. The presence of the so-called young or mature soot along the flame height is strictly related to different optical and heat-exchange properties necessary to fit all the experimental data available.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.A. Melton, Appl. Opt. 23, 2201 (1984) ADSCrossRefGoogle Scholar
  2. 2.
    S. De Iuliis, F. Cignoli, G. Zizak, Appl. Opt. 44, 7414 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    D.R. Snelling, G.J. Smallwood, O.L. Gulder, F. Liu, in 2nd Joint Meeting of the US Section of the Combustion Institute, California (2001) Google Scholar
  4. 4.
    K.A. Thomson, D.R. Snelling, G.J. Smallwood, F. Liu, Appl. Phys. B 83, 469 (2006) ADSCrossRefGoogle Scholar
  5. 5.
    M. Hofmann, B. Kock, T. Dreier, C. Schultz, in 7th Symposium on Towards Clean Diesel Engine, Aachen, Germany (2009) Google Scholar
  6. 6.
    D.R. Snelling, G.J. Smallwood, F. Liu, O.L. Gulder, W.D. Bachalo, Appl. Opt. 44, 6773 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    S. De Iuliis, F. Migliorini, F. Cignoli, G. Zizak, Appl. Phys. B 83, 397 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    T. Lehre, R. Suntz, H. Bockhorn, Proc. Combust. Inst. 30, 2585 (2005) CrossRefGoogle Scholar
  9. 9.
    S. De Iuliis, F. Cignoli, G. Zizak, Proc. Combust. Inst. 31, 869 (2007) CrossRefGoogle Scholar
  10. 10.
    H.A. Michelsen, P.O. Witze, D. Kayes, S. Hochgreb, Appl. Opt. 42, 5577 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    R. Hadef, K.-P. Geigle, W. Meier, M. Aigner, Int. J. Therm. Sci. 49, 1457 (2010) CrossRefGoogle Scholar
  12. 12.
    C. Schultz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bugie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    P. Roth, A.V. Filippov, J. Aerosol Sci. 27, 95 (1996) CrossRefGoogle Scholar
  14. 14.
    S. Will, S. Schraml, A. Leipertz, Proc. Combust. Inst. 26, 2277 (1996) Google Scholar
  15. 15.
    S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20, 2342 (1995) ADSCrossRefGoogle Scholar
  16. 16.
    K.C. Smyth, C.R. Shaddix, Combust. Flame 107, 314 (1996) CrossRefGoogle Scholar
  17. 17.
    S.S. Krishnan, K.-C. Lin, G.M. Faeth, J. Heat Transf. 123, 517 (2000) CrossRefGoogle Scholar
  18. 18.
    J. Zhu, M.Y. Choi, G.W. Mullholand, S.L. Manzello, L.A. Gritzo, J. Suo-Anttila, Proc. Combust. Inst. 29, 237 (2002) CrossRefGoogle Scholar
  19. 19.
    T.C. Bond, R.W. Bergstrom, Aerosol Sci. Technol. 40, 27 (2006) CrossRefGoogle Scholar
  20. 20.
    F. Liu, K.J. Daun, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 355 (2006) ADSCrossRefGoogle Scholar
  21. 21.
    R. Starke, B. Kock, P. Roth, Shock Waves 12, 351 (2003) ADSCrossRefGoogle Scholar
  22. 22.
    D.R. Snelling, F. Liu, G.J. Smallwood, O.L. Gulder, Combust. Flame 136, 180 (2004) CrossRefGoogle Scholar
  23. 23.
    S. Dankers, A. Leipertz, Appl. Opt. 43, 3726 (2004) ADSCrossRefGoogle Scholar
  24. 24.
    K.J. Daun, P.H. Mercier, G.J. Smallwood, F. Liu, Y. Le Page, in Proc. HT2007, ASME-JSME Thermal Engineering Summer Heat Transfer Conference, Vancouver, Canada Google Scholar
  25. 25.
    H. Bladh, J. Johnsson, P.-E. Bengtsson, Appl. Phys. B 96, 645 (2009) ADSCrossRefGoogle Scholar
  26. 26.
    H. Bladh, J. Johnson, N.-E. Olofsson, A. Bohlin, P.-E. Bengtsson, Proc. Combust. Inst. 33, 641–648 (2011) CrossRefGoogle Scholar
  27. 27.
    S. De Iuliis, S. Maffi, F. Cignoli, G. Zizak, Appl. Phys. B 102, 891–903 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    M. Hofmann, B. Kock, C. Schulz, in Proc. European Combust. Meeting, Kreta, 11–13 April (2007). http://www.liisim.com Google Scholar
  29. 29.
    D. Woiki, A. Giesen, P. Roth, Proc. Combust. Inst. 28, 2531 (2000) CrossRefGoogle Scholar
  30. 30.
    H.A. Michelsen, F. Liu, F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, Appl. Phys. B 87, 503 (2007) ADSCrossRefGoogle Scholar
  31. 31.
    F. Cignoli, S. De Iuliis, G. Zizak, Appl. Spectrosc. 58, 1372 (2004) ADSCrossRefGoogle Scholar
  32. 32.
    F. Migliorini, Study of combustion process of hydrogen-hydrocarbon mixtures. Ph.D. Thesis, Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, XXI ciclo 2006–2008 Google Scholar
  33. 33.
    C.S. McEnally, U.O. Koylu, L.D. Pfefferle, D.E. Rosner, Combust. Flame 109, 701 (1997) CrossRefGoogle Scholar
  34. 34.
    F. Migliorini, S. De Iuliis, F. Cignoli, G. Zizak, Combust. Flame 153, 384 (2008) CrossRefGoogle Scholar
  35. 35.
    F. Migliorini, S. De Iuliis, F. Cignoli, G. Zizak, Appl. Opt. 45, 7706 (2006) ADSCrossRefGoogle Scholar
  36. 36.
    F. Migliorini, S. De Iuliis, S. Maffi, F. Cignoli, G. Zizak, Appl. Phys. B 96, 637 (2009) ADSCrossRefGoogle Scholar
  37. 37.
    P. Desgroux, X. Mercier, B. Lefort, R. Lemaire, E. Therssen, J.F. Pauwels, Combust. Flame 155, 289 (2008) CrossRefGoogle Scholar
  38. 38.
    R.L. Vander Wall, M.Y. Choi, Carbon 37, 231 (1999) CrossRefGoogle Scholar
  39. 39.
    R.L. Vander Wall, K.A. Jensen, Appl. Opt. 37, 1607 (1998) ADSCrossRefGoogle Scholar
  40. 40.
    R.L. Vander Wall, M.Y. Choi, K.-O. Lee, Combust. Flame 102, 200 (1995) CrossRefGoogle Scholar
  41. 41.
    H.A. Michelsen, A.V. Tivanski, M.K. Gilles, L.H. van Poppel, M.A. Dansson, P.R. Buseck, Appl. Opt. 46, 959 (2007) ADSCrossRefGoogle Scholar
  42. 42.
    H. Chang, T.T. Charalampopoulos, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 430, 577 (1990) ADSCrossRefGoogle Scholar
  43. 43.
    A.D. Abid, E.D. Tolmachoff, D.J. Phares, H. Wang, Y. Liu, A. Laskin, Proc. Combust. Inst. 32, 681 (2009) CrossRefGoogle Scholar
  44. 44.
    A.D. Abid, J. Camacho, D.A. Sheen, H. Wang, Energy Fuels 23, 4286 (2009) CrossRefGoogle Scholar
  45. 45.
    B. Zhao, Z. Yang, M.V. Johnston, H. Wang, A.S. Wexler, M. Malthasar, M. Kraft, Combust. Flame 133, 173 (2003) CrossRefGoogle Scholar
  46. 46.
    U.O. Koylu, G. Faeth, J. Heat Transf. 118, 415 (1996) CrossRefGoogle Scholar
  47. 47.
    F. Liu, M. Yang, F.A. Hill, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 383 (2006) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.CNR-IENI, sede di MilanoMilanoItaly

Personalised recommendations