Applied Physics B

, Volume 104, Issue 1, pp 161–173 | Cite as

A nonlinear controller for three-dimensional tracking of a fluorescent particle in a confocal microscope

Article

Abstract

We describe an algorithm for using a confocal microscope for tracking single fluorescent particles diffusing in three dimensions. The algorithm uses a standard confocal setup and directly translates each fluorescence measurement into an actuator command. Through physical simulations, we illustrate 3-D tracking in both stage scanning and beam scanning confocal systems. The simulated stage scanning system achieved tracking of particles diffusing in 3-D with coefficients up to 0.2 μm2/s when the average fluorescence intensities was less than 1.84 counts per measurement cycle (corresponding to less than 18,400 counts per second) in the presence of background fluorescence with a rate of 5,000 counts per second. Increasing the fluorescence intensity to approximately 193 counts per measurement cycle (1,930,000 counts per second) allowed the system to track up to particles diffusing with coefficients as large as 0.7 μm2/s. The beam steering system allowed for faster motion of the focal volume of the microscope and successfully tracked particles diffusing with coefficients up to 0.7 μm2/s with fluorescence measurement intensities of approximately 0.189 counts per measurement cycle (37,570 counts per second) and with coefficients up to 90 μm2/s when the fluorescence intensity was increased to 19 counts per measurement cycle (3,807,500 counts/sec).

References

  1. 1.
    K.I. Mortensen, L.S. Churchman, J.A. Spudich, H. Flyvbjerg, Nat. Methods 7, 377 (2010) CrossRefGoogle Scholar
  2. 2.
    J. Chao, S. Ram, E.S. Ward, R.J. Ober, Opt. Express 17, 24377 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    E.J.G. Peterman, H. Sosa, W.E. Moerner, Annu. Rev. Phys. Chem. 55, 79 (2004) ADSCrossRefGoogle Scholar
  4. 4.
    E.S. Yeung, Annu. Rev. Phys. Chem. 55, 97 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    W.E. Moerner, Proc. Natl. Acad. Sci. USA 104, 12596 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    H. Yang, Curr. Opin. Chem. Biol. 14, 3 (2010) CrossRefGoogle Scholar
  7. 7.
    V. Levi, Q. Ruan, E. Gratton, Biophys. J. 88, 2919 (2005) CrossRefGoogle Scholar
  8. 8.
    K. McHale, A.J. Berglund, H. Mabuchi, Nano Lett. 7, 3535 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    Z. Shen, S.B. Andersson, in Proc. IEEE Conference on Decision and Control (2009), pp. 6052–6057 Google Scholar
  10. 10.
    Z. Shen, S.B. Andersson, IEEE Trans. Control Syst. Tech. (2010). doi:10.1109/TCST.2010.2067449 Google Scholar
  11. 11.
    H. Cang, C.M. Wong, C.S. Xu, A.H. Rizvi, H. Yang, Appl. Phys. Lett. 88, 223901 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    H. Cang, C.S. Xu, D. Montiel, H. Yang, Opt. Lett. 32, 2729 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    G.A. Lessard, P.M. Goodwin, J.H. Werner, Appl. Phys. Lett. 91, 224106 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    N.G. Walter, C.-Y. Huang, A.J. Manzo, M.A. Sobhy, Nat. Methods 5, 475 (2008) CrossRefGoogle Scholar
  15. 15.
    H. Cang, C.S. Xu, H. Yang, Chem. Phys. Lett. 457, 285 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    N.P. Wells, G.A. Lessard, J.H. Werner, Anal. Chem. 90, 9830 (2008) CrossRefGoogle Scholar
  17. 17.
    S.B. Andersson, in Proc. American Control Conference (2010), pp. 4981–4986 Google Scholar
  18. 18.
    D. Baronov, J. Baillieul, in Proc. American Control Conference (2007), pp. 2141–2146 CrossRefGoogle Scholar
  19. 19.
    D. Baronov, J. Baillieul, in Proc. American Control Conference (2008), pp. 678–683 Google Scholar
  20. 20.
    D. Baronov, S.B. Andersson, IEEE Trans. Nanotechnol. 9, 367 (2010) ADSCrossRefGoogle Scholar
  21. 21.
    J.E. Jonkman, E.H.K. Stelzer, in Resolution and Contrast in Confocal and Two-Photon Microscopy (Wiley-Liss, New York, 2002), pp. 101–125 Google Scholar
  22. 22.
    D. Croft, G. Shed, S. Devasia, J. Dyn. Syst. Meas. Control 123, 35 (2001) CrossRefGoogle Scholar
  23. 23.
    Y. Wu, Q. Zou, IEEE Trans. Control Syst. Technol. 15, 936 (2007) CrossRefGoogle Scholar
  24. 24.
    D.Y. Abramovitch, S. Hoen, R. Workman, Asian J. Control 11, 188 (2009) MathSciNetCrossRefGoogle Scholar
  25. 25.
    D.Y. Abramovitch, S.B. Andersson, L.Y. Pao, G. Schitter, in Proc. American Control Conference (2007), pp. 3488–3502 CrossRefGoogle Scholar
  26. 26.
    G. Klein, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 211, 431 (1952) ADSCrossRefMATHGoogle Scholar
  27. 27.
    S.B. Andersson, Opt. Express 16, 18714 (2008) ADSCrossRefGoogle Scholar
  28. 28.
    S. Inoué, in Handbook of Biological Confocal Microscopy, 3rd edn. (Springer, Berlin, 2006), pp. 1–14 CrossRefGoogle Scholar
  29. 29.
    G.F. Franklin, J.D. Powell, A. Emami-Naeini, Feedback Control of Dynamic Systems, 6th edn. (Pearson Education, Upper Saddle River, 2010) Google Scholar
  30. 30.
    R. Juškaitis, in Handbook of Biological Confocal Microscopy, 3rd edn. (Springer, Berlin, 2006), pp. 239–250 CrossRefGoogle Scholar
  31. 31.
    E. Gratton, M.J. vandeVen, in Handbook of Biological Confocal Microscopy, 3rd edn. (Springer, Berlin, 2006), pp. 239–250 Google Scholar
  32. 32.
    M. Kuno, D.P. Fromm, H.F. Hamann, A. Gallagher, D.J. Nesbitt, J. Chem. Phys. 7, 3117 (2000) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringBoston UniversityBostonUSA

Personalised recommendations