Applied Physics B

, 104:699

Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry

  • D. R. Richardson
  • R. P. Lucht
  • W. D. Kulatilaka
  • S. Roy
  • J. R. Gord
Article

Abstract

Chirped-probe-pulse (CPP) femtosecond (fs) coherent anti-Stokes Raman scattering (CARS) spectroscopy for single-laser-shot temperature measurements in flames is discussed. In CPP fs CARS, a giant Raman coherence is created in the medium by impulsive pump-Stokes excitation, and the temperature-dependent temporal decay of this initial coherence is mapped into the frequency of the CARS signal using a CPP. The theory of the CPP fs CARS technique is presented. A computer code has been developed to calculate theoretical CPP fs CARS spectra. The input parameters for the calculation of the theoretical spectra include the temperature, probe time delay, ratio of the resonant and nonresonant susceptibilities, and parameters for characterizing the pump, Stokes and probe pulses. The parameters for characterizing the pump, Stokes and probe pulses are determined from the best fit of theoretical spectra to experimental spectra acquired from calibration flames at a known temperature. For spectra acquired in subsequent measurements, these laser parameters are fixed and temperature is determined as one of the fit parameters from the best fit of theoretical spectra to experimental spectra. For single-laser-shot CPP fs CARS temperature measurements performed in steady, near-adiabatic flames, the best-fit temperature distribution width is typically less than 1.5% of the mean temperature. The mean temperature is accurate to within approximately 3% with respect to the adiabatic flame temperature. The most significant limitation on temperature measurement accuracy is associated with the evaluation of the theoretical laser parameters. Significant improvements in the temperature measurement accuracy are expected once monitoring equipment capable of characterizing the spectrum and phase of each laser pulse is incorporated in the experiments.

References

  1. 1.
    A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, Amsterdam, 1996) Google Scholar
  2. 2.
    S. Roy, T.R. Meyer, R.P. Lucht, V.M. Belovich, E. Corporan, J.R. Gord, Combust. Flame 138, 273 (2004) CrossRefGoogle Scholar
  3. 3.
    T.R. Meyer, S. Roy, R.P. Lucht, J.R. Gord, Combust. Flame 142, 52 (2005) CrossRefGoogle Scholar
  4. 4.
    S. Roy, J.R. Gord, A.K. Patnaik, Prog. Energy Combust. 36, 280 (2010) CrossRefGoogle Scholar
  5. 5.
    J.R. Gord, T.R. Meyer, S. Roy, Annu. Rev. Anal. Chem. 1, 883 (2008) CrossRefGoogle Scholar
  6. 6.
    R.L. Farrow, P.L. Mattern, L.A. Rahn, Appl. Opt. 21, 3119 (1982) ADSCrossRefGoogle Scholar
  7. 7.
    M. Pealat, P. Bouchardy, M. Lefebvre, J.-P. Taran, Appl. Opt. 24, 1012 (1985) ADSCrossRefGoogle Scholar
  8. 8.
    W. Kreutner, W. Stricker, T. Just, Appl. Spectrosc. 41, 98 (1987) ADSCrossRefGoogle Scholar
  9. 9.
    R.R. Antcliff, O. Jarrett Jr., ed. by J.A. Roux, T.D. McCay, Combustion Diagnostics by Non-Intrusive Methods, Progress in Astronautics and Aeronautics, vol. 92 (1984) Google Scholar
  10. 10.
    S. Roy, W.D. Kulatilaka, D.R. Richardson, R.P. Lucht, J.R. Gord, Opt. Lett. 34, 3857 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    R.P. Lucht, S. Roy, T.R. Meyer, J.R. Gord, Appl. Phys. Lett. 89, 251112 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    D. von der Linde, A. Laubereau, W. Kaiser, Phys. Rev. Lett. 26, 954 (1971) ADSCrossRefGoogle Scholar
  13. 13.
    D.D. Dlott, C.L. Schosser, E.L. Chronister, Chem. Phys. Lett. 90, 386 (1982) ADSCrossRefGoogle Scholar
  14. 14.
    A. Laubereau, W. Kaiser, Rev. Mod. Phys. 50, 607 (1978) ADSCrossRefGoogle Scholar
  15. 15.
    V. Morozov, S. Mochalov, A. Olenin, V. Tunkin, A. Kouzov, J. Raman Spectrosc. 34, 983 (2003) ADSCrossRefGoogle Scholar
  16. 16.
    W.D. Kulatilaka, P.S. Hsu, H.U. Stauffer, J.R. Gord, S. Roy, Appl. Phys. Lett. doi:10.1063/1.3483871
  17. 17.
    H. Graener, A. Laubereau, Opt. Commun. 54, 141 (1985) ADSCrossRefGoogle Scholar
  18. 18.
    H. Graener, A. Laubereau, J.W. Nibler, Opt. Lett. 9, 165 (1984) ADSCrossRefGoogle Scholar
  19. 19.
    S. Roy, T.R. Meyer, J.R. Gord, Appl. Phys. Lett. 87, 264103 (2005) ADSCrossRefGoogle Scholar
  20. 20.
    S. Roy, T.R. Meyer, J.R. Gord, Opt. Lett. 30, 3222 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    T.R. Meyer, S. Roy, J.R. Gord, Appl. Spectrosc. 61, 1135 (2007) ADSCrossRefGoogle Scholar
  22. 22.
    T. Seeger, J. Kiefer, A. Leipertz, B.D. Patterson, C.J. Kliewer, T.B. Settersten, Opt. Lett. 34, 3755 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    T. Seeger, J. Kiefer, Y. Gao, B.D. Patterson, C.J. Kliewer, T.B. Settersten, Opt. Lett. 35, 2040 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    P.S. Hsu, W.D. Kulatilaka, A.U. Patnaik, T.R. Meyer, J.R. Gord, S. Roy, Exp. Fluids 49, 969 (2010) CrossRefGoogle Scholar
  25. 25.
    R. Leonhardt, W. Holzapfel, W. Zinth, W. Raiser, Chem. Phys. Lett. 133, 373 (1987) ADSCrossRefGoogle Scholar
  26. 26.
    H. Okamoto, K. Yoshihara, Chem. Phys. Lett. 177, 568 (1991) ADSCrossRefGoogle Scholar
  27. 27.
    T. Joo, A.C. Albrecht, J. Chem. Phys. 99, 3244 (1993) ADSCrossRefGoogle Scholar
  28. 28.
    C.C. Hayden, D.W. Chandler, J. Chem. Phys. 103, 10465 (1995) ADSCrossRefGoogle Scholar
  29. 29.
    M. Schmitt, G. Knopp, A. Materny, W. Kiefer, J. Phys. Chem. A 102, 4059 (1998) CrossRefGoogle Scholar
  30. 30.
    T. Lang, M. Motzkus, H.M. Frey, P. Beaud, J. Chem. Phys. 115, 5418 (2001) ADSCrossRefGoogle Scholar
  31. 31.
    T. Lang, M. Motzkus, J. Raman Spectrosc. 31, 65 (2000) ADSCrossRefGoogle Scholar
  32. 32.
    V. Arakcheev, D. Jakovlev, S. Mochalov, V. Morozov, A. Olenin, V. Tunkin, J. Raman Spectrosc. 33, 884 (2002) ADSCrossRefGoogle Scholar
  33. 33.
    G. Knopp, P. Radi, M. Tulej, T. Gerber, P. Beaud, J. Chem. Phys. 118, 8223 (2003) ADSCrossRefGoogle Scholar
  34. 34.
    H. Skenderovic, T. Buckup, W. Wohlleben, M. Motzkus, J. Raman Spectrosc. 33, 866 (2002) ADSCrossRefGoogle Scholar
  35. 35.
    S. Meyer, V. Engel, J. Raman Spectrosc. 31, 33 (2000) ADSCrossRefGoogle Scholar
  36. 36.
    T. Seibert, M. Schmitt, A. Vierheilig, G. Flachenecker, V. Engel, A. Materny, W. Keifer, J. Raman Spectrosc. 31, 25 (2000) ADSCrossRefGoogle Scholar
  37. 37.
    V.V. Lozovoy, B.I. Grimberg, E.J. Brown, I. Pastirk, M. Dantus, J. Raman Spectrosc. 31, 41 (2000) ADSCrossRefGoogle Scholar
  38. 38.
    G. Knopp, K. Kirch, P. Beaud, K. Mishima, H. Spitzer, P. Radi, M. Tulej, T. Gerber, J. Raman Spectrosc. 34, 989 (2003) ADSCrossRefGoogle Scholar
  39. 39.
    D. Oron, N. Dudovich, D. Yelin, Y. Silberberg, Phys. Rev. Lett. 88, 063004 (2002) ADSCrossRefGoogle Scholar
  40. 40.
    D. Oron, N. Dudovich, D. Yelin, Y. Silbergerg, Phys. Rev. A 65, 043408 (2002) ADSCrossRefGoogle Scholar
  41. 41.
    S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, J.R. Gord, Appl. Phys. Lett. 95, 074102 (2009) ADSCrossRefGoogle Scholar
  42. 42.
    P.J. Wrzesinski, D. Pestov, V.V. Lozovoy, B. Xu, S. Roy, J.R. Gord, M. Dantus, J. Raman Spectrosc. (2010). doi:10.1002/jrs.2709
  43. 43.
    S. Roy, P.J. Wrzesinski, D. Pestov, M. Dantus, J.R. Gord, J. Raman Spectrosc. (2010). doi:10.1002/jrs.2587
  44. 44.
    H. Li, D.A. Harris, B. Xu, P.J. Wrzesinski, V.V. Lozovoy, M. Dantus, Appl. Opt. 48, B17 (2009) ADSCrossRefGoogle Scholar
  45. 45.
    T. Lang, K.-L. Kompa, M. Motzkus, Chem. Phys. Lett. 310, 65 (1999) ADSCrossRefGoogle Scholar
  46. 46.
    P. Beaud, H.-M. Frey, T. Lang, M. Motzkus, Chem. Phys. Lett. 344, 407 (2001) ADSCrossRefGoogle Scholar
  47. 47.
    S. Roy, P.J. Kinnius, R.P. Lucht, J.R. Gord, Opt. Commun. 281, 319 (2008) ADSCrossRefGoogle Scholar
  48. 48.
    S. Roy, D.R. Richardson, P.J. Kinnius, R.P. Lucht, J.R. Gord, Appl. Phys. Lett. 94, 144101 (2009) ADSCrossRefGoogle Scholar
  49. 49.
    R.P. Lucht, P.J. Kinnius, S. Roy, J.R. Gord, J. Chem. Phys. 127, 044316 (2007) ADSCrossRefGoogle Scholar
  50. 50.
    T. Lang, M. Motzkus, J. Opt. Soc. Am. B 19, 340 (2002) ADSCrossRefGoogle Scholar
  51. 51.
    A.M. Weiner, Ultrafast Optics (Wiley, New York, 2009) CrossRefGoogle Scholar
  52. 52.
    D. Romanov, A. Fillin, R. Compton, R. Levis, Opt. Lett. 32, 3161 (2007) ADSCrossRefGoogle Scholar
  53. 53.
    R.E. Palmer, Sandia National Laboratories Report No. SAND89-8206 (1989) Google Scholar
  54. 54.
    N.M. Laurendeau, Statistical Thermodynamics (Cambridge University Press, New York, 2005) MATHGoogle Scholar
  55. 55.
    L.A. Rahn, R.E. Palmer, J. Opt. Soc. B 3, 1164 (1986) ADSCrossRefGoogle Scholar
  56. 56.
    K.V. Price, R.M. Storn, J.A. Lampinen, Diverential Evolution (Springer, Berlin, 2005) Google Scholar
  57. 57.
    R.D. Hancock, K.E. Bertagnolli, R.P. Lucht, Combust. Flame 109, 323 (1997) CrossRefGoogle Scholar
  58. 58.
    D.R. Richardson, R.P. Lucht, S. Roy, W.D. Kulatilaka, J.R. Gord, Proc. Combust. Inst. doi:10.1016/j.proci.2010.05.060

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • D. R. Richardson
    • 1
  • R. P. Lucht
    • 1
  • W. D. Kulatilaka
    • 2
  • S. Roy
    • 2
  • J. R. Gord
    • 3
  1. 1.School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Spectral Energies, LLCDaytonUSA
  3. 3.Air Force Research LaboratoryPropulsion DirectorateWright-Patterson AFBUSA

Personalised recommendations