Applied Physics B

, Volume 104, Issue 2, pp 331–341 | Cite as

Influence of soot particle aggregation on time-resolved laser-induced incandescence signals

  • H. Bladh
  • J. Johnsson
  • J. Rissler
  • H. Abdulhamid
  • N.-E. Olofsson
  • M. Sanati
  • J. Pagels
  • P.-E. Bengtsson
Article

Abstract

Laser-induced incandescence (LII) is a versatile technique for quantitative soot measurements in flames and exhausts. When used for particle sizing, the time-resolved signals are analysed as these will show a decay rate dependent on the soot particle size. Such an analysis has traditionally been based on the assumption of isolated primary particles. However, soot particles in flames and exhausts are usually aggregated, which implies loss of surface area, less heat conduction and hence errors in estimated particle sizes. In this work we present an experimental investigation aiming to quantify this effect. A soot generator, based on a propane diffusion flame, was used to produce a stable soot stream and the soot was characterised by transmission electron microscopy (TEM), a scanning mobility particle sizer (SMPS) and an aerosol particle mass analyzer coupled in series after a differential mobility analyzer (DMA-APM). Despite nearly identical primary particle size distributions for three selected operating conditions, LII measurements resulted in signal decays with significant differences in decay rate. However, the three cases were found to have quite different levels of aggregation as shown both in TEM images and mobility size distributions, and the results agree qualitatively with the expected effect of diminished heat conduction from aggregated particles resulting in longer LII signal decays. In an attempt to explain the differences quantitatively, the LII signal dependence on aggregation was modelled using a heat and mass transfer model for LII given the primary particle and aggregate size distribution data as input. Quantitative agreement was not reached and reasons for this discrepancy are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.J. Santoro, C.R. Shaddix, in Applied Combustion Diagnostics (Taylor and Francis, New York, 2002), p. 252 Google Scholar
  2. 2.
    C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    P.-E. Bengtsson, M. Aldén, Appl. Phys. B 60, 51 (1995) ADSCrossRefGoogle Scholar
  4. 4.
    S. De Iuliis, F. Cignoli, G. Zizak, Appl. Opt. 44, 7414 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    T. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn, Appl. Opt. 42, 2021 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    D.R. Snelling, F.S. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180 (2004) CrossRefGoogle Scholar
  7. 7.
    S. Will, S. Schraml, K. Bader, A. Leipertz, Appl. Opt. 37, 5647 (1998) ADSCrossRefGoogle Scholar
  8. 8.
    Z.H. Lim, A. Lee, K.Y.Y. Lim, Z. Yanwu, S. Chorng-Haur, J. Appl. Phys. 107, 064319 (2010), 7 pp. ADSCrossRefGoogle Scholar
  9. 9.
    B.F. Kock, C. Kayan, J. Knipping, H.R. Orthner, P. Roth, Proc. Combust. Inst. 30, 1689 (2005) CrossRefGoogle Scholar
  10. 10.
    R. Starke, B. Kock, P. Roth, Shock Waves 12, 351 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    J. Delhay, P. Desgroux, E. Therssen, H. Bladh, P.-E. Bengtsson, H. Hönen, J. Black, I. Vallet, Appl. Phys. B 95, 825 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    J.D. Black, M.P. Johnson, Aerosp. Sci. Technol. 14, 329 (2010) CrossRefGoogle Scholar
  13. 13.
    H. Bladh, J. Johnsson, P.-E. Bengtsson, Appl. Phys. B 90, 109 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    L.A. Melton, Appl. Opt. 23, 2201 (1984) ADSCrossRefGoogle Scholar
  15. 15.
    R.W. Weeks, W.W. Duley, J. Appl. Phys. 45, 4661 (1974) ADSCrossRefGoogle Scholar
  16. 16.
    H.A. Michelsen, J. Chem. Phys. 118, 7012 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    F. Goulay, P.E. Schrader, L. Nemes, M.A. Dansson, H.A. Michelsen, Proc. Combust. Inst. 32, 963 (2009) CrossRefGoogle Scholar
  18. 18.
    S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20, 2342 (1995) ADSCrossRefGoogle Scholar
  19. 19.
    P. Roth, A.V. Filippov, J. Aerosol Sci. 27, 95 (1996) CrossRefGoogle Scholar
  20. 20.
    A.V. Filippov, M. Zurita, D.E. Rosner, J. Colloid Interface Sci. 229, 261 (2000) CrossRefGoogle Scholar
  21. 21.
    F. Liu, M. Yang, F.A. Hill, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 383 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    F. Liu, G.J. Smallwood, in 40th Thermophysics Conference (Seattle, Washington, 2008) Google Scholar
  23. 23.
    Ü.Ö. Köylü, G.M. Faeth, T.L. Farias, M.G. Carvalho, Combust. Flame 100, 621 (1995) CrossRefGoogle Scholar
  24. 24.
    S.-A. Kuhlmann, J. Reimann, S. Will, J. Aerosol Sci. 37, 1696 (2006) CrossRefGoogle Scholar
  25. 25.
    A.V. Filippov, D.E. Rosner, Int. J. Heat Mass Transf. 43, 127 (2000) MATHCrossRefGoogle Scholar
  26. 26.
    K.J. Daun, G.J. Smallwood, F. Liu, J. Heat Transf. 130, 121201 (2008), 9 pp. CrossRefGoogle Scholar
  27. 27.
    H. Bladh, J. Johnsson, P.-E. Bengtsson, Appl. Phys. B 96, 645 (2009) ADSCrossRefGoogle Scholar
  28. 28.
    E.O. Knutson, K.T. Whitby, J. Aerosol. Sci. 6, 443 (1975) CrossRefGoogle Scholar
  29. 29.
    K. Park, D. Dutcher, M. Emery, J. Pagels, H. Sakurai, J. Scheckman, S. Qian, M.R. Stolzenburg, X. Wang, J. Yang, P.H. McMurry, Aerosol Sci. Technol. 42, 801 (2008) CrossRefGoogle Scholar
  30. 30.
    K. Park, F. Cao, D.B. Kittelson, P.H. McMurry, Environ. Sci. Technol. 37, 577 (2003) CrossRefGoogle Scholar
  31. 31.
    J. Pagels, A.F. Khalizov, P.H. McMurry, R.Y. Zhang, Aerosol Sci. Technol. 43, 629 (2009) CrossRefGoogle Scholar
  32. 32.
    K. Park, D.B. Kittelson, M.R. Zachariah, P.H. McMurry, J. Nanopart. Res. 6, 267 (2004) CrossRefGoogle Scholar
  33. 33.
    A. Malik, H. Abdulhamid, J. Pagels, J. Rissler, M. Lindskog, R. Bjorklund, P. Jozsa, J. Visser, A. Spetz, M. Sanati, Aerosol Sci. Technol. 45, 1 (2011) CrossRefGoogle Scholar
  34. 34.
    CAST, Combustion Aerosol Standard (Jing Ltd., Im Park 4, CH-3052 Zollikofen BE, Switzerland). http://www.sootgenerator.com. Available September 2010
  35. 35.
    W.S. Rasband, ImageJ (U.S. National Institutes of Health, Bethesda, MD, USA, 2007). http://rsb.info.nih.gov/ij/. Available September 2010
  36. 36.
    K. Tian, F.S. Liu, K.A. Thomson, D.R. Snelling, G.J. Smallwood, D.S. Wang, Combust. Flame 138, 195 (2004) CrossRefGoogle Scholar
  37. 37.
    F. Liu, G.J. Smallwood, J. Quant. Spectrosc. Radiat. Transf. 111, 302 (2010) ADSCrossRefGoogle Scholar
  38. 38.
    H. Bladh, J. Johnsson, N.E. Olofsson, A. Bohlin, P.E. Bengtsson, Proc. Combust. Inst. 33, 641 (2011) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • H. Bladh
    • 1
  • J. Johnsson
    • 1
  • J. Rissler
    • 2
  • H. Abdulhamid
    • 2
  • N.-E. Olofsson
    • 1
  • M. Sanati
    • 2
  • J. Pagels
    • 2
  • P.-E. Bengtsson
    • 1
  1. 1.Division of Combustion PhysicsLund UniversityLundSweden
  2. 2.Division of Ergonomics and Aerosol TechnologyLund UniversityLundSweden

Personalised recommendations