Applied Physics B

, Volume 103, Issue 4, pp 777–788

A comparison of resonantly pumped Ho:YLF and Ho:LLF lasers in CW and Q-switched operation under identical pump conditions

Article

Abstract

Singly 0.5 at.% Ho doped crystals of YLiF4 (YLF) and LuLiF4 (LLF) are studied under identical pump conditions in continuous-wave (CW) and Q-switched operation. Longitudinal end-pumped CW laser performance shows Ho:LLF to have a slightly lower threshold and a slightly higher slope efficiency with respect to absorbed pump power than Ho:YLF. Both lasers were operated on π-polarization. At a cavity output coupling of 20% and a crystal length of 30 mm, the Ho:LLF (Ho:YLF) laser yielded 18.8 W (18 W) of CW output at a wavelength of 2067.8 nm (2064.0 nm) for 41.4 W (42.2 W) of absorbed pump power with a slope efficiency of 67.1% (65.6%) and an optical-to-optical efficiency of 45.4% (42.6%) with respect to absorbed pump power. With the same output coupling and a crystal length of 40 mm, the Ho:LLF (Ho:YLF) laser yielded 20.5 W (18.1 W) of CW output at a wavelength of 2067.7 nm (2064.3 nm) for 51.5 W (50.0 W) of absorbed pump power with a slope efficiency of 58.4% (55.4%) and an optical-to-optical efficiency of 39.8 (36.1%) with respect to absorbed pump power. The influence of the temperature of the cooling mount on CW laser performance was studied and showed very similar results for both laser materials. At full pump power, a slope of −155 mW/°C (−149 mW/°C) was observed for the Ho:LLF (Ho:YLF) laser with a crystal length of 30 mm. In Q-switched operation, the Ho:LLF (Ho:YLF) laser produced 37 mJ (38.5 mJ) at a repetition rate of 100 Hz with a pulse duration of 38 ns (35 ns) at a wavelength of 2053.1 nm (2050.2 nm) with a slope efficiency of 30.3% (31%) and an optical-to-optical efficiency of 14.2% (13.9%) with respect to absorbed pump power. The beam quality was nearly diffraction limited (M2<1.1).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.Y. Fan, G. Huber, R.L. Byer, P. Mitzscherlich, IEEE J. Quantum Electron. 24, 924 (1988) ADSCrossRefGoogle Scholar
  2. 2.
    P.A. Budni, L.A. Pomeranz, M.L. Lemons, C.A. Miller, J.R. Mosto, E.P. Chicklis, J. Opt. Soc. Am. B 17, 723 (2000) ADSCrossRefGoogle Scholar
  3. 3.
    P.A. Budni, C.R. Ibach, S.D. Setzler, E.J. Gustafson, R.T. Castro, E.P. Chicklis, Opt. Lett. 28, 1016 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    E. Lippert, G. Rustad, K. Stenersen, in Advanced Solid-State Photonics, San Antonio, TX, USA. OSA Technical Digest (Optical Society of America, Washington D.C., 2003), pp. 266–268 Google Scholar
  5. 5.
    D.Y. Shen, A. Abdolvand, L.J. Cooper, W.A. Clarkson, Appl. Phys. B 79, 559 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    E. Lippert, S. Nicolas, G. Arisholm, K. Stenersen, G. Rustad, Appl. Opt. 45, 3839 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    K. Scholle, P. Fuhrberg, in Conf. Lasers and Electro-Optics (CLEO), San Jose, CA, USA. OSA Tech. Dig. (CD) (Optical Society of America, 2008), paper CTuAA1 Google Scholar
  8. 8.
    A.A. Kaminskii, Laser Crystals (Springer, Berlin, 1981) Google Scholar
  9. 9.
    B.M. Walsh, N.P. Barnes, B. Di Bartolo, J. Appl. Phys. 83, 2772 (1998) ADSCrossRefGoogle Scholar
  10. 10.
    M. Eichhorn, Appl. Phys. B 93, 269 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    A. Dergachev, P.F. Moulton, in Advanced Solid-State Photonics, San Antonio, TX, USA. OSA Technical Digest (Optical Society of America, Washington D.C., 2003), paper PD10 Google Scholar
  12. 12.
    Y. Bai, J. Yu, M. Petros, P.J. Petzar, B.C. Trieu, H.R. Lee, U. Singh, in Conference on Lasers and Electro-Optics (CLEO) 2007, Baltimore, MD, USA. OSA Tech. Dig. Ser. (CD) (Optical Society of America, 2007), paper CTuN5 Google Scholar
  13. 13.
    A. Dergachev, D. Armstrong, A. Smith, T. Drake, M. Dubois, Opt. Express 15, 14404 (2007) ADSCrossRefMATHGoogle Scholar
  14. 14.
    Y. Bai, J. Yu, P. Petzar, M. Petros, S. Chen, B. Trieu, H. Lee, U. Singh, in Conf. Lasers and Electro-Optics/Int. Quantum Electronics Conf., Baltimore, MD, USA. OSA Tech. Dig. (CD) (Optical Society of America, 2009), paper CWH5 Google Scholar
  15. 15.
    L.R. Botha, C. Bollig, M.J.D. Esser, R.N. Campbell, C. Jacobs, D.R. Preussler, Opt. Express 17, 20615 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    B.M. Walsh, G.W. Grew, N.P. Barnes, J. Phys.: Condens. Matter 17, 7643 (2005) ADSCrossRefGoogle Scholar
  17. 17.
    B. Walsh, N.P. Barnes, J. Yu, M. Petros, in Advanced Solid-State Lasers, ed. by M. Fermann and L. Marshall, Québec City, Canada. Trends Opt. Photon., Ser., vol. 68 (Optical Society of America, 2002), paper TuB8 Google Scholar
  18. 18.
    J.W. Kim, J.I. Mackenzie, D. Parisi, S. Veronesi, M. Tonelli, W.A. Clarkson, Opt. Lett. 35, 420 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    W. Koen, C. Bollig, H. Strauss, M. Schellhorn, C. Jacobs, M.J.D. Esser, Appl. Phys. B 99, 101 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    LASCAD, LAS-CAD GmbH, Brunhildenstrasse 9, 80639 Munich, Germany, http://www.las-cad.com
  21. 21.
    B.M. Walsh, N.P. Barnes, M. Petros, J. Yu, U.N. Singh, J. Appl. Phys. 95, 3255 (2004) ADSCrossRefGoogle Scholar
  22. 22.
    R.L. Aggarwal, D.J. Ripin, J.R. Ochoa, T.Y. Fan, J. Appl. Phys. 98, 103514 (2005) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.French–German Research Institute of Saint Louis ISLSaint-LouisFrance

Personalised recommendations