Applied Physics B

, Volume 104, Issue 3, pp 647–652

Goos–Hänchen shift at an interface of a composite material: effects of particulate clustering

Article

Abstract

The Goos–Hänchen (GH) shift of a p-polarized light beam reflected from an interface of a composite material of particulate metals in a dielectric host is studied theoretically using effective medium approaches, with focus on the effects due to the clustering of the metal particles. With application of a fractal-clustering model, it is shown that the composite can have optically metallic behavior even for relatively low volume fraction of metal when clustering takes place, with appreciable negative GH shifts to take place for light of long wavelengths close to grazing incident angles. Furthermore, we confirm that large reflectance is always accompanied with this metal behavior, thus rendering these shifts easily observable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.M. Shalaev (ed.), Optical Properties of Nanostructured Random Media (Springer, Berlin, 2002). See also, J.S. Moya, S. Lopez-Esteban, C. Pecharroman, Prog. Mater. Sci. 52, 1017 (2007) Google Scholar
  2. 2.
    D.A.G. Bruggeman, Ann. Phys. (Leipz.) 24, 636 (1935) ADSCrossRefGoogle Scholar
  3. 3.
    G.L. Carr, R.L. Henrey, N.E. Russell, J.C. Garland, D.B. Tanner, Phys. Rev. B 24, 777 (1981) ADSCrossRefGoogle Scholar
  4. 4.
    M.J. Pliska, E.J. Sanchez, P.T. Leung, T.F. George, Solid State Commun. 89, 397 (1994) ADSCrossRefGoogle Scholar
  5. 5.
    H.P. Chiang, P.T. Leung, W.S. Tse, Solid State Commun. 101, 45 (1997) ADSCrossRefGoogle Scholar
  6. 6.
    B. Zhao, L. Gao, Opt. Express 17, 21433 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    P.M. Hui, D. Stroud, Phys. Rev. B 33, 2163 (1986) ADSCrossRefGoogle Scholar
  8. 8.
    J.C. Maxwell-Garnett, Philos. Trans. R. Soc. Lond. 203, 385 (1904) ADSCrossRefGoogle Scholar
  9. 9.
    J.C. Maxwell-Garnett, Philos. Trans. R. Soc. Lond. 205, 237 (1906) ADSCrossRefGoogle Scholar
  10. 10.
    J.B. Gotte, A. Aiello, J.P. Woerdman, Opt. Express 16, 3961 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    C.W. Chen, H.Y. Chung, H.P. Chiang, J.Y. Lu, R. Chang, D.P. Tsai, P.T. Leung, Appl. Phys. A 101, 191 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    K. Artmann, Ann. Phys. 437, 87 (1948) CrossRefGoogle Scholar
  13. 13.
    M. Merano, A. Aiello, G.W. ‘t Hooft, M.P. van Exter, E.R. Eliel, J.P. Woerdman, Opt. Express 15, 15928 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    P.T. Leung, C.W. Chen, H.P. Chiang, Opt. Commun. 276, 206 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    H.M. Lai, S.W. Chan, Opt. Lett. 27, 680 (2002) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of PhysicsPortland State UniversityPortlandUSA
  2. 2.Institute of Optoelectronic SciencesNational Taiwan Ocean UniversityKeelungTaiwan, ROC
  3. 3.Institute of PhysicsAcademia SinicaTaipeiTaiwan, ROC
  4. 4.Instrument Technology Research CenterNational Applied Research LaboratoriesHsinchuTaiwan, ROC

Personalised recommendations