Applied Physics B

, Volume 102, Issue 4, pp 819–823 | Cite as

Electron beam driven alkali metal atom source for loading a magneto-optical trap in a cryogenic environment

  • S. Haslinger
  • R. Amsüss
  • C. Koller
  • C. Hufnagel
  • N. Lippok
  • J. Majer
  • J. Verdu
  • S. Schneider
  • J. Schmiedmayer
Article

Abstract

We present a versatile and compact electron beam driven source for alkali metal atoms, which can be implemented in cryostats. With a heat load of less than 10 mW, the heat dissipation normalized to the atoms loaded into the magneto-optical trap (MOT) is about a factor 1000 smaller than for a typical alkali metal dispenser. The measured linear scaling of the MOT loading rate with electron current observed in the experiments indicates that electron stimulated desorption is the corresponding mechanism to release the atoms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.A. Cornell, C.E. Wieman, Rev. Mod. Phys. 74, 875 (2002) ADSCrossRefGoogle Scholar
  2. 2.
    W. Ketterle, Rev. Mod. Phys. 74, 1131 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995) ADSCrossRefGoogle Scholar
  4. 4.
    K.B. Hadzibabic, M.-O. Stan, M.R. Dieckmann, N.J. Gupta, D.S. Zwierlein, D.M. Görlitz, W. Ketterle, Phys. Rev. Lett. 88, 160401 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995) ADSCrossRefGoogle Scholar
  6. 6.
    T. Weber, J. Herbig, M. Mark, H.C. Nägerl, R. Grimm, Science 299, 232 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    G. Modugno, G. Ferrari, G. Roati, R.J. Brecha, A. Simoni, M. Inguscio, Science 294, 1320 (2001) ADSCrossRefGoogle Scholar
  8. 8.
    C.C. Bradley, C.A. Sackett, R.G. Hulet, Phys. Rev. Lett. 78, 985 (1997) ADSCrossRefGoogle Scholar
  9. 9.
    T.E. Barrett, S.W. Dapore-Schwartz, M.D. Ray, G.P. Lafyatis, Phys. Rev. Lett. 67, 3483 (1991) ADSCrossRefGoogle Scholar
  10. 10.
    SAES Getters S.p.A, Alkali metal dispenser datasheet, 20151 Milano, Italy (2003) Google Scholar
  11. 11.
    R.J. Schoelkopf, S.M. Girvin, Nature 451, 664 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    J. Verdú, H. Zoubi, C. Koller, J. Majer, H. Ritsch, J. Schmiedmayer, Phys. Rev. Lett. 103, 043603 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    A.S. Sørensen, C.H. van der Wal, L.I. Childress, M.D. Lukin, Phys. Rev. Lett. 92, 063601 (2004) ADSCrossRefGoogle Scholar
  14. 14.
    D. Petrosyan, G. Bensky, G. Kurizki, I. Mazets, J. Majer, J. Schmiedmayer, Phys. Rev. A 79, 040304 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    D. Petrosyan, M. Fleischhauer, Phys. Rev. Lett. 100, 170501 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, J. Schmiedmayer, Phys. Rev. Lett. 84, 4749 (2000) ADSCrossRefGoogle Scholar
  17. 17.
    R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, C. Henkel, Adv. At. Mol. Opt. Phys. 48, 263 (2002) Google Scholar
  18. 18.
    J. Reichel, Appl. Phys. B 74, 469 (2002) ADSCrossRefGoogle Scholar
  19. 19.
    J. Fortágh, C. Zimmermann, Rev. Mod. Phys. 79, 235 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    R. Nirrengarten, A. Qarry, C. Roux, A. Emmert, G. Nogues, M. Brune, J.M. Raimond, S. Haroche, Phys. Rev. Lett. 97, 200405 (2006) ADSCrossRefGoogle Scholar
  21. 21.
    T. Mukai, C. Hufnagel, A. Kasper, T. Meno, A. Tsukada, K. Semba, F. Shimizu, Phys. Rev. Lett. 98, 260407 (2007) ADSCrossRefGoogle Scholar
  22. 22.
    B. Kasch, H. Hattermann, D. Cano, T. Judd, S. Scheel, C. Zimmermann, R. Kleiner, D. Kölle, J. Fortágh, New J. Phys. 12, 065024 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    C. Hufnagel, T. Mukai, F. Shimizu, Phys. Rev. A 79, 053641 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    A. Emmert, A. Lupascu, G. Nogues, M. Brune, J.-M. Raimond, S. Haroche, Eur. Phys. J. D 51, 173 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    C. Roux, A. Emmert, A. Lupascu, T. Nirrengarten, G. Nogues, M. Brune, J.-M. Raimond, S. Haroche, Europhys. Lett. 81, 56004 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    D. Cano, B. Kasch, H. Hattermann, R. Kleiner, C. Zimmermann, D. Koelle, J. Fortágh, Phys. Rev. Lett. 101, 183006 (2008) ADSCrossRefGoogle Scholar
  27. 27.
    M. Meucci, E. Mariotti, P. Bicchi, C. Marinelli, L. Moi, Europhys. Lett. 25, 639 (1994) ADSCrossRefGoogle Scholar
  28. 28.
    S.N. Atutov, R. Calabrese, V. Guidi, B. Mai, A.G. Rudavets, E. Scansani, L. Tomassetti, V. Biancalana, A. Burchianti, C. Marinelli, E. Mariotti, L. Moi, S. Veronesi, Phys. Rev. A 67, 053401 (2003) ADSCrossRefGoogle Scholar
  29. 29.
    S.E. Maxwell, N. Brahms, R. deCarvalho, D.R. Glenn, J.S. Helton, S.V. Nguyen, D. Patterson, J.M. Doyle, J. Petricka, D. DeMille, Phys. Rev. Lett. 95, 173201 (2005) ADSCrossRefGoogle Scholar
  30. 30.
    D.A. Steck, Los Alamos Nat. Lab., technical report LA-UR-03-8638 (2008), http://steck.us/alkalidata/rubidium87numbers.pdf
  31. 31.
    E.L. Raab, M. Prentiss, A. Cable, S. Chu, D.E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987) ADSCrossRefGoogle Scholar
  32. 32.
    R.H. Fowler, L.W. Nordheim, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 119, 173 (1928) ADSCrossRefMATHGoogle Scholar
  33. 33.
    V.N. Ageev, Y.A. Kuznetsov, B.V. Yakshinskii, T.E. Madey, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 101, 69 (1995) ADSCrossRefGoogle Scholar
  34. 34.
    T. Lin, IBM Syst. J. 11, 527 (1967) Google Scholar
  35. 35.
    I. Langmuir, Phys. Rev. 2, 329 (1913) ADSCrossRefGoogle Scholar
  36. 36.
    K. Kuroda, T. Suzuki, J. Appl. Phys. 45, 1436 (1974) ADSCrossRefGoogle Scholar
  37. 37.
    K. Kuroda, H. Ebisui, T. Suzuki, J. Appl. Phys. 45, 2336 (1974) ADSCrossRefGoogle Scholar
  38. 38.
    T. Gericke, P. Würtz, D. Reitz, T. Langen, H. Ott, Nat. Phys. 4, 949 (2008) CrossRefGoogle Scholar
  39. 39.
    R.S. Schappe, T. Walker, L.W. Anderson, C.C. Lin, Phys. Rev. Lett. 76, 4328 (1996) ADSCrossRefGoogle Scholar
  40. 40.
    H. Tratnik, Electron stimulated desorption of condensed gases on cryogenic surfaces, Ph.D. thesis Vienna University of Technology, 2005 Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • S. Haslinger
    • 1
  • R. Amsüss
    • 1
  • C. Koller
    • 1
  • C. Hufnagel
    • 1
  • N. Lippok
    • 1
    • 2
  • J. Majer
    • 1
  • J. Verdu
    • 1
    • 3
  • S. Schneider
    • 1
  • J. Schmiedmayer
    • 1
  1. 1.Vienna Center for Quantum Science and TechnologyAtominstitutViennaAustria
  2. 2.Planet and Star Formation DepartmentMax-Planck-Institut for AstronomyHeidelbergGermany
  3. 3.Department of Physics and AstronomyUniversity of SussexBrightonUK

Personalised recommendations