Advertisement

Applied Physics B

, Volume 103, Issue 2, pp 421–433 | Cite as

Pixel-based characterisation of CMOS high-speed camera systems

  • V. Weber
  • J. BrübachEmail author
  • R. L. Gordon
  • A. Dreizler
Article

Abstract

Quantifying high-repetition rate laser diagnostic techniques for measuring scalars in turbulent combustion relies on a complete description of the relationship between detected photons and the signal produced by the detector. CMOS-chip based cameras are becoming an accepted tool for capturing high frame rate cinematographic sequences for laser-based techniques such as Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) and can be used with thermographic phosphors to determine surface temperatures. At low repetition rates, imaging techniques have benefitted from significant developments in the quality of CCD-based camera systems, particularly with the uniformity of pixel response and minimal non-linearities in the photon-to-signal conversion. The state of the art in CMOS technology displays a significant number of technical aspects that must be accounted for before these detectors can be used for quantitative diagnostics. This paper addresses these issues.

Keywords

Particle Image Velocime High Repetition Rate Planar Laser Induce Fluorescence CMOS Camera Tomographic Particle Image Velocime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Upatnieks, J.F. Driscoll, S.L. Ceccio, Proc. Combust. Inst. 29, 1897 (2002) CrossRefGoogle Scholar
  2. 2.
    C. Kittler, A. Dreizler, Appl. Phys. B 89, 163 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    C.M. Fajardo, J.D. Smith, V. Sick, Appl. Phys. B, Lasers Opt. 85, 25 (2006) ADSCrossRefGoogle Scholar
  4. 4.
    M. Konle, F. Kiesewetter, T. Sattelmayer, Exp. Fluids 44, 529 (2008) CrossRefGoogle Scholar
  5. 5.
    I. Boxx, C. Heeger, R.L. Gordon, B. Böhm, M. Aigner, A. Dreizler, W. Meier, Proc. Combust. Inst. 32, 905 (2009) CrossRefGoogle Scholar
  6. 6.
    I. Boxx, C. Heeger, R.L. Gordon, B. Böhm, A. Dreizler, W. Meier, Flow Turbul. Combust. (2010). doi: 10.1007/s10494-010-9291-2 Google Scholar
  7. 7.
    B. Böhm, C. Heeger, I. Boxx, W. Meier, A. Dreizler, Proc. Combust. Inst. 32, 1647 (2009) CrossRefGoogle Scholar
  8. 8.
    C. Heeger, B. Böhm, S.F. Ahmed, R.L. Gordon, I. Boxx, W. Meier, A. Dreizler, E. Mastorakos, Proc. Combust. Inst. 32, 2957 (2009) CrossRefGoogle Scholar
  9. 9.
    A. Upatnieks, J.F. Driscoll, C.C. Rasmussen, S.L. Ceccio, Combust. Flame 138, 259 (2004) CrossRefGoogle Scholar
  10. 10.
    A.M. Steinberg, J.F. Driscoll, S.L. Ceccio, Exp. Fluids 44, 985 (2008) CrossRefGoogle Scholar
  11. 11.
    I. Boxx, M. Stöhr, C.D. Carter, W. Meier, Appl. Phys. B, Lasers Opt. 95, 23 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    A. Schröder, R. Geisler, G.E. Elsinga, F. Scarano, U. Dierksheide, Exp. Fluids 44, 305 (2008) CrossRefGoogle Scholar
  13. 13.
    C. Heeger, R.L. Gordon, M.J. Tummers, T. Sattelmayer, A. Dreizler, Exp. Fluids 49, 853 (2010) CrossRefGoogle Scholar
  14. 14.
    T. Kissel, J. Brübach, E. Baum, A. Dreizler, Appl. Phys. B 96, 731 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    S. Verhelst, T. Wallner, Prog. Energy Combust. Sci. 35, 490 (2009) CrossRefGoogle Scholar
  16. 16.
    E. Oldenhof, M.J. Tummers, E.H. van Veena, D.J.E.M. Roekaerts, Combust. Flame 157, 1167 (2010) CrossRefGoogle Scholar
  17. 17.
    B. Thurow, N. Jiang, M. Samimy, W.R. Lempert, Appl. Opt. 43, 5064 (2005) ADSCrossRefGoogle Scholar
  18. 18.
    N.B. Jiang, M.C. Webster, W.R. Lempert, Appl. Opt. 48, B23 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    R. Hain, C.J. Kähler, C. Tropea, Exp. Fluids 42, 403 (2007) CrossRefGoogle Scholar
  20. 20.
    S.E. Bohndiek, A. Blue, A.T. Clark, M.L. Prydderch, R. Turchetta, G.J. Royle, R.D. Speller, IEEE Sens. J. 8, 1734 (2008) CrossRefGoogle Scholar
  21. 21.
    D.W. Holdsworth, R.K. Gerson, A. Fenster, Med. Phys. 17, 876 (1990) CrossRefGoogle Scholar
  22. 22.
    J.R. Janesick, Scientific Charge-Coupled Devices (SPIE, Philadelphia, 2001) CrossRefGoogle Scholar
  23. 23.
    B. Jähne, Practical Handbook on Image Processing for Scientific and Technical Applications, 2nd edn. (CRC Press, Boca Raton, 2004) CrossRefGoogle Scholar
  24. 24.
    B. Pain, B. Hancock, in Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications IV, ed. by M.M. Blouke, N. Sampat, R.J. Motta. Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), vol. 5017 (SPIE, Bellingham, 2003), pp. 94–103 Google Scholar
  25. 25.
    J.R. Janesick, Photon Transfer (SPIE, Philadelphia, 2007) CrossRefGoogle Scholar
  26. 26.
    A. Ferrero, J. Campos, A. Pons, in Proceedings of the 9th International Conference on New Developments and Applications in Optical Radiometry, World Radiation Center (2005), pp. 113–114 Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • V. Weber
    • 1
  • J. Brübach
    • 1
    Email author
  • R. L. Gordon
    • 2
  • A. Dreizler
    • 1
  1. 1.Fachgebiet Reaktive Strömungen und Messtechnik, Center of Smart InterfacesTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Hopkinson Laboratory, Department of EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations