Applied Physics B

, Volume 103, Issue 2, pp 399–403 | Cite as

Electrode-free optical sensor for high voltage using a domain-inverted LiNbO3 waveguide near cut-off

  • D. Tulli
  • D. Janner
  • M. Garcia-Granda
  • R. Ricken
  • V. Pruneri
Article

Abstract

We present a novel all-optical electric field sensor based on a proton-exchange waveguide near cut-off, centered on a few microns wide domain-inverted region in a z-cut LiNbO3 substrate. The output intensity from the waveguide is modulated by an external electric field via the electro-optic effect. We also demonstrate the sensor’s performance by detecting DC fields up to 2.6 MV/m and high-frequency (1.1 GHz) fields ranging from 19 V/m to 23 kV/m. These features and the proposed design allow operating the sensor without the use of any metal antenna, thus making it suited for use in high electric field and harsh conditions—e.g. power stations and transmission lines—without any danger for the operator or risk of damage to the sensor head.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.H. Lee, F.-T. Hwang, W.-T. Shay, C.-T. Lee, Microw. Opt. Technol. Lett. 48, 9 (2006) Google Scholar
  2. 2.
    G. Gaborit, L. Duvilaret, in ECIO’05, Grenoble (2005) Google Scholar
  3. 3.
    A. Garzarella, S.B. Qadri, D.H. Wu, Appl. Phys. Lett. 94, 221113 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    C.H. Bulmer, Appl. Phys. Lett. 53, 2368 (1988) ADSCrossRefGoogle Scholar
  5. 5.
    D.H. Naghski, J.T. Boyd, H.E. Jackson, S. Sriram, S.A. Kingsley, J. Latess, J. Lightwave Technol. 12, 6 (1994) CrossRefGoogle Scholar
  6. 6.
    P.P. Chavez, F. Rahmatian, N.A.F. Jaeger, in IEEE/PES Transmission and Distribution Conf. Expos., Atlanta (2001) Google Scholar
  7. 7.
    D. Runde, S. Brunken, C.E. Rüter, D. Kip, Appl. Phys. B 86, 91 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    A. Neyer, W. Sohler, Appl. Phys. Lett. 35, 256 (1979) ADSCrossRefGoogle Scholar
  9. 9.
    N.H. Zhu, E.Y.B. Pun, P.S. Chang, IEE Proc. Optoelectron. 142, 248 (1995) CrossRefGoogle Scholar
  10. 10.
    P.R. Ashley, W.S. Chang, Appl. Phys. Lett. 45, 840 (1984) ADSCrossRefGoogle Scholar
  11. 11.
    R. Chen, C.S. Tsai, Opt. Lett. 11, 546 (1986) ADSCrossRefGoogle Scholar
  12. 12.
    S.S. Lee, M.C. Oh, S.Y. Shin, K.H. Keh, Photonics Technol. Lett. 5, 9 (1993) Google Scholar
  13. 13.
    A. Yariv, Introduction to Optical Electronics (Holt, Rinehart and Winston, New York, 1971), p. 15 Google Scholar
  14. 14.
    M.L. Bortz, M.M. Feier, Opt. Lett. 16, 23 (1991) CrossRefGoogle Scholar
  15. 15.
    J.M.M.M. de Almeida, Opt. Eng. 46, 6 (2007) Google Scholar
  16. 16.
    F. Cecelja, M. Bordovsky, W. Balachandran, IEEE Trans. Instrum. Meas. 50, 2 (2001) CrossRefGoogle Scholar
  17. 17.
    Y.-J. Yang, Y.C. Wang, G.F. Chen, Y.S. Wang, W. Zhao, Chin. Phys. Lett. 24, 4 (2007) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • D. Tulli
    • 1
  • D. Janner
    • 1
  • M. Garcia-Granda
    • 1
  • R. Ricken
    • 2
  • V. Pruneri
    • 1
    • 3
  1. 1.ICFO—Institut de Ciències FotòniquesMediterranean Technology ParkBarcelonaSpain
  2. 2.Applied Physics DepartmentUniversity of PaderbornPaderbornGermany
  3. 3.ICREA, Institució Catalana de Recerca i Estudis AvançatsBarcelonaSpain

Personalised recommendations